Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T16:17:31.058Z Has data issue: false hasContentIssue false

Ecofriendly synthesis of ultra-small metal-doped SnO2 quantum dots

Published online by Cambridge University Press:  16 March 2015

Antonio Tirado-Guízar*
Affiliation:
Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A.P. 1166, Tijuana 22500, BC, México
Georgina Esther Pina-Luis
Affiliation:
Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, A.P. 1166, Tijuana 22500, BC, México
Francisco Paraguay-Delgado*
Affiliation:
Departamento de Materiales Nanoestructurados, Centro de Investigación en Materiales Avanzados S. C, Av. Miguel de Cervantes 120, Complejo Industrial Chihuahua, CP 31109 Chihuahua, Chih., México
*
*Address all correspondence to Francisco Paraguay-Delgado, Antonio Tirado-Guízar atfrancisco.paraguay@cimav.edu.mx; guizarantonio@gmail.com
*Address all correspondence to Francisco Paraguay-Delgado, Antonio Tirado-Guízar atfrancisco.paraguay@cimav.edu.mx; guizarantonio@gmail.com
Get access

Abstract

An ecofriendly synthesis is established to obtain ultra-small SnO2 nanoparticles (NPs) doped with metals by a hydrothermal method using only tin tetrachloride, urea, and water as reagents. This synthesis was done in a short period time at low temperature and without surfactants. Microscopy analysis revealed the formation of doped tin oxide NPs with a diameter smaller than 2.8 nm. Un-doped and doped tin oxides were obtained with a tetragonal type rutile structure with an average surface area of 348 m2/g.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bruchez, M., Moronne, M., Gin, P., Weiss, S., and Alivisatos, A.P.: Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013 (1998).Google Scholar
2.Hu, W., Gao, S., Prasad, P.N., Wang, J., and Xu, J.: Emploing photoassisted ligand exchange technique in layered quantum dot LEDs. J. Nanomater. 1 15 (2012).Google Scholar
3.Subramaniam, P., Lee, S.J., Shah, S., Patel, S., Starovoytov, V., and Lee, K-B.: Generation of a library of non-toxic quantum dots for cellular imaging and siRNA delivery. Adv. Mater. 24, 4014 (2012).Google Scholar
4.Tirado-Guizar, A., Pina-Luis, G., Paraguay-Delgado, F., and Ramirez-Herrera, D.: Size-dependent enhanced energy transfer from tryptophan to CdSe/mercaptopropionic acid quantum dots: a new fluorescence resonance energy transfer nanosensor. Sci. Adv. Mater. 6, 492 (2014).CrossRefGoogle Scholar
5.Lee, E.J.H., Ribeiro, C., Giraldi, T.R., Longo, E., and Leite, E.R.: Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay. Appl. Phys. Lett. 84, 1745 (2004).CrossRefGoogle Scholar
6.Kolmakov, A. and Moskovits, M.: Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu. Rev. Mater. Res. 34, 151 (2004).CrossRefGoogle Scholar
7.Jia, T., Wang, W., Long, F., Fu, Z., Wang, H., and Zhang, Q.: Synthesis, characterization, and photocatalytic activity of Zn-doped SnO2 hierarchical architectures assembled by nanocones. J. Phys. Chem. C 113, 9071 (2009).Google Scholar
8.Rani, S., Roy, S.C., Karar, N., and Bhatnagar, M.C.: Structure, microstructure and photoluminescence properties of Fe doped SnO2 thin films. Solid State Commun. 141, 214 (2007).CrossRefGoogle Scholar
9.Fitzgerald, C.B., Venkatesan, M., Douvalis, A.P., Huber, S., and Coey, J.M.D.: SnO2 doped with Mn, Fe or Co: room temperature dilute magnetic semiconductors. J. Appl. Phys. 95, 7390 (2004).CrossRefGoogle Scholar
10.Liu, J., Chen, H., Lin, Z., and Lin, J-M.: Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal. Chem. 82, 7380 (2010).CrossRefGoogle ScholarPubMed
11.Azam, A., Ahmed, A.S., Habib, S.S., and Naqvi, A.H.: Effect of Mn doping on the structural and optical properties of SnO2 nanoparticles. J. Alloys Compd. 523, 83 (2012).Google Scholar
12.Kiani, M.J., Samadi, J., and Yaghoubyan, S.H.: High sensitivity of tin oxide sensor by sol-gel method. IJ-Nano. 1, 46 (2012).Google Scholar
13.Singh, A.K. and Nakate, U.T.: Microwave synthesis, characterization and photocatalytic properties of SnO2 Nanoparticles. Adv. Nanopart. 2, 66 (2013).Google Scholar
14.Paraguay-Delgado, F., Antúnez-Flores, W., Miki-Yoshida, M., Aguilar-Elguezabal, A., Santiago, P., Diaz, R., and Ascencio, J.A.: Structural analysis and growing mechanisms for long SnO2 nanorods synthesized by spray pyrolysis. Nanotechnology 16, 688 (2005).Google Scholar
15.Tan, L., Wang, L., and Wang, Y.: Hydrothermal synthesis of SnO2 nanostructures with different morphologies and their optical propertie. J. Nanomater. 1, 1 (2011).CrossRefGoogle Scholar
16.Zhou, Z., Wu, J., Li, H., and Wang, Z.: Field emission from in situ-grown vertically aligned SnO2 nanowire arrays. Nanoscale Res. Lett. 7, 7 (2012).Google Scholar
17.Prasittichai, C. and Hupp, J.T.: Surface modification of SnO2 photoelectrodes in dye-sensitized solar cells: significant improvements in photovoltage via Al2O3 atomic layer deposition. J. Phys. Chem. Lett. 1, 1611 (2010).Google Scholar
18.Ye, J., Zhang, H., Yang, R., Li, X., and Qi, L.: Morphology-controlled synthesis of SnO2 nanotubes by using 1d silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 6, 296 (2010).Google Scholar
19.Lou, Z., Wang, L., Fei, T., and Zhang, T.: Enhanced ethanol sensing properties of NiO-doped SnO2 polyhedra. New J. Chem. 36, 1003 (2012).Google Scholar
20.Ji, X., Huang, X., Liu, J., Jiang, J., Li, X., Ding, R., Hu, Y., Wu, F., and Li, Q.: Carbon-coated SnO2 nanorod array for lithium-ion battery anode material. Nanoscale Res. Lett. 5, 649 (2010).Google Scholar
21.Zhu, H., Yang, D., Yu, G., Zhang, H., and Yao, K.: A simple hydrothermal route for synthesizing SnO2 quantum dots. Nanotechnology 17, 2386 (2006).Google Scholar
22.Xi, G. and Ye, J.: Ultrathin SnO2 nanorods: template- and surfactant-free solution phase synthesis, growth mechanism, optical, gas-sensing, and surface adsorption properties. Inorg. Chem. 49, 2302 (2007).CrossRefGoogle Scholar
23.Birkel, A., Loges, N., Mugnaioli, E., Branscheid, R., Frank, D.K.S., Panthöfer, M., and Tremel, W.: Interaction of alkaline metal cations with oxidic surfaces: effect on the morphology of SnO2 nanoparticles. Langmuir 26, 3590 (2010).Google Scholar
24.Huheey, J.E., Keiter, E.A., and Keiter, R.L.: Inorganic Chemistry: Principles of Structure and Reactivity (Harper Collins Collag Publishers, New York, 1993), pp. 344358.Google Scholar
25.Rietveld, H.M.: Line profiles of neutrón powder-diffraction peaks for structure refinement. Acta Crystallogr. 22, 151 (1967).CrossRefGoogle Scholar
26.Fullprof Suite Home Page: https://www.ill.eu/sites/fullprof/index.html (accessed February 2015).Google Scholar
27.Elumalai, N.K., Jose, R., Archana, P.S., Chellappan, V., and Ramakrishna, S.: Charge transport through electrospun SnO2 nanoflowers and nanofibers: role of surface trap density on electron transport dynamics. J. Phys. Chem. C 116, 22112 (2012).Google Scholar
28.Lou, X.W., Yuan, C., and Archer, L.A.: Double-walled SnO2 nano-cocoons with movable magnetic cores. Adv. Mater. 19, 3328 (2007).Google Scholar
29.Wang, C., Zhou, Y., Ge, M., Xu, X., Zhang, Z., and Jiang, J.Z.: Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 132, 46 (2010).Google Scholar
Supplementary material: File

Tirado-Guízar supplementary material

Figures S1-S2

Download Tirado-Guízar supplementary material(File)
File 2 MB