Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T11:49:43.524Z Has data issue: false hasContentIssue false

Chemical and electronic structure analysis of a SrTiO3 (001)/p-Ge (001) hydrogen evolution photocathode

Published online by Cambridge University Press:  19 March 2018

Kelsey A. Stoerzinger*
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland WA 99352, USA
Yingge Du
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland WA 99352, USA
Steven R. Spurgeon
Affiliation:
Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland WA 99352, USA
Le Wang
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland WA 99352, USA
Demie Kepaptsoglou
Affiliation:
SuperSTEM, SciTech Daresbury Campus, Daresbury, WA44AD, UK Jeol Nanocentre, University of York, Heslington, York, YO10 5BR, UK Department of Physics, University of York, Heslington, York, YO10 5BR, UK
Quentin M. Ramasse
Affiliation:
SuperSTEM, SciTech Daresbury Campus, Daresbury, WA44AD, UK School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK School of Physics, University of Leeds, Leeds, LS2 9JT, UK
Ethan J. Crumlin
Affiliation:
Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
Scott A. Chambers*
Affiliation:
Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland WA 99352, USA
*
Address all correspondence to Kelsey A. Stoerzinger and Scott A. Chambers at kelsey.stoerzinger@pnnl.gov; sa.chambers@pnnl.gov
Address all correspondence to Kelsey A. Stoerzinger and Scott A. Chambers at kelsey.stoerzinger@pnnl.gov; sa.chambers@pnnl.gov
Get access

Abstract

Germanium is a small-gap semiconductor that efficiently absorbs visible light, resulting in photoexcited electrons predicted to be sufficiently energetic to reduce H2O for H2 gas evolution. In order to protect the surface from corrosion and prevent surface charge recombination in contact with aqueous pH 7 electrolyte, we grew epitaxial SrTiO3 layers of different thicknesses on p-Ge (001) surfaces. Four-nanometer SrTiO3 allows photogenerated electrons to reach the surface and evolve H2 gas, while 13 nm SrTiO3 blocks these electrons. Ambient pressure x-ray photoelectron spectroscopy indicates that the surface readily dissociates H2O to form OH species, which may impact surface band bending.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cook, T.R., Dogutan, D.K., Reece, S.Y., Surendranath, Y., Teets, T.S., and Nocera, D.G.: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 64746502 (2010).Google Scholar
2.Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 64466473 (2010).CrossRefGoogle ScholarPubMed
3.Kudo, A. and Miseki, Y.: Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253278 (2009).Google Scholar
4.Li, J. and Wu, N.: Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: a review. Catal. Sci. Technol. 5, 13601384 (2015).Google Scholar
5.Alexander, B.D., Kulesza, P.J., Rutkowska, I., Solarska, R., and Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 22982303 (2008).Google Scholar
6.Sivula, K. and van de Krol, R.: Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 1, 15010 (2016).Google Scholar
7.Smith, W.A., Sharp, I.D., Strandwitz, N.C., and Bisquert, J.: Interfacial band-edge energetics for solar fuels production. Energy Environ. Sci. 8, 28512862 (2015).Google Scholar
8.Sze, S.M.: Physics of semiconductor devices (John Wiley and Sons Hoboken, 1981).Google Scholar
9.Prince, M.B.: Drift mobilities in semiconductors. I. Germanium. Phys. Rev. 92, 681687 (1953).CrossRefGoogle Scholar
10.Chen, S. and Wang, L.-W.: Thermodynamic oxidation and reduction potentials of photocatalytic semiconductors in aqueous solution. Chem. Mater. 24, 36593666 (2012).Google Scholar
11.Erdélyi, V.R. and Green, M.: Hydrogen overpotential on germanium electrodes. Nature 182, 1592 (1958).Google Scholar
12.Memming, R. and Neumann, G.: Electrochemical reduction and hydrogen evolution on germanium electrodes. J. Electroanal. Chem. Interfacial Electrochem. 21, 295305 (1969).CrossRefGoogle Scholar
13.Hu, S., Lewis, N.S., Ager, J.W., Yang, J., McKone, J.R., and Strandwitz, N.C.: Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C 119, 2420124228 (2015).Google Scholar
14.Kornblum, L., Fenning, D.P., Faucher, J., Hwang, J., Boni, A., Han, M.G., Morales-Acosta, M.D., Zhu, Y., Altman, E.I., Lee, M.L., Ahn, C.H., Walker, F.J., and Shao-Horn, Y.: Solar hydrogen production using epitaxial SrTiO3 on a GaAs photovoltaic. Energy Environ. Sci. 10, 377382 (2017).CrossRefGoogle Scholar
15.Hudait, M.K., Clavel, M., Zhu, Y., Goley, P.S., Kundu, S., Maurya, D., and Priya, S.: Integration of SrTiO3 on crystallographically oriented epitaxial germanium for low-power device applications. ACS Appl. Mater. Interfaces 7, 54715479 (2015).CrossRefGoogle ScholarPubMed
16.McDaniel, M.D., Ngo, T.Q., Posadas, A., Hu, C., Lu, S., Smith, D.J., Yu, E.T., Demkov, A.A., and Ekerdt, J.G.: A chemical route to monolithic integration of crystalline oxides on semiconductors. Adv. Mater. Interfaces 1, 1400081 (2014).Google Scholar
17.Chambers, S.A., Du, Y., Comes, R.B., Spurgeon, S.R., and Sushko, P.V.: The effects of core-level broadening in determining band alignment at the epitaxial SrTiO3(001)/p-Ge(001) heterojunction. Appl. Phys. Lett. 110, 082104 (2017).CrossRefGoogle Scholar
18.Stoerzinger, K.A., Hong, W.T., Crumlin, E.J., Bluhm, H., and Shao-Horn, Y.: Insights into electrochemical reactions from ambient pressure photoelectron spectroscopy. Acc. Chem. Res. 48, 29762983 (2015).Google Scholar
19.Ponath, P., Posadas, A.B., Hatch, R.C., and Demkov, A.A.: Preparation of a clean Ge(001) surface using oxygen plasma cleaning. J. Vac. Sci. Technol. B: Nanotechnol. Microelectron.: Mater. Process. Meas. Phenom. 31, 031201 (2013).Google Scholar
20.Jahangir-Moghadam, M., Ahmadi-Majlan, K., Shen, X., Droubay, T., Bowden, M., Chrysler, M., Su, D., Chambers, S.A., and Ngai, J.H.: Band-gap engineering at a semiconductor–crystalline oxide interface. Adv. Mater. Interfaces 2, 1400497 (2015).Google Scholar
21.Jones, L., Yang, H., Pennycook, T.J., Marshall, M.S.J., Van Aert, S., Browning, N.D., Castell, M.R., and Nellist, P.D.: Smart align—a new tool for robust non-rigid registration of scanning microscope data. Adv. Struct. Chem. Imaging 1, 8 (2015).Google Scholar
22.Krivanek, O.L., Chisholm, M.F., Nicolosi, V., Pennycook, T.J., Corbin, G.J., Dellby, N., Murfitt, M.F., Own, C.S., Szilagyi, Z.S., Oxley, M.P., Pantelides, S.T., and Pennycook, S.J.: Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571 (2010).Google Scholar
23.Grass, M.E., Karlsson, P.G., Aksoy, F., Lundqvist, M., Wannberg, B., Mun, B.S., Hussain, Z., and Liu, Z.: New ambient pressure photoemission endstation at advanced light source beamline 9.3.2. Rev. Sci. Instrum. 81, 053106 (2010).Google Scholar
24.Stoerzinger, K.A., Hong, W.T., Crumlin, E.J., Bluhm, H., Biegalski, M.D., and Shao-Horn, Y.: Water reactivity on the LaCoO3 (001) surface: an ambient pressure x-ray photoelectron spectroscopy study. J. Phys. Chem. C 118, 1973319741 (2014).Google Scholar
25.Jones, L., Varambhia, A., Beanland, R., Kepaptsoglou, D., Griffiths, I., Ishizuka, A., Azough, F., Freer, R., Ishizuka, K., Cherns, D., Ramasse, Q.M., Lozano-Perez, S., and Nellist, P.D.: Managing dose-, damage- and data-rates in multi-frame spectrum-imaging. Microscopy (In press), DOI: 10.1093/jmicro/dfx125 (2018).Google Scholar
26.Ping, Y., Sundararaman, R., and Goddard, W.A. III: Solvation effects on the band edge positions of photocatalysts from first principles. Phys. Chem. Chem. Phys. 17, 3049930509 (2015).Google Scholar
27.Castelli, I.E., Thygesen, K.S., and Jacobsen, K.W.: Calculated Pourbaix diagrams of cubic perovskites for water splitting: stability against corrosion. Top. Catal. 57, 265272 (2014).CrossRefGoogle Scholar
28.Quan, L.N., Jang, Y.H., Stoerzinger, K.A., May, K.J., Jang, Y.J., Kochuveedu, S.T., Shao-Horn, Y., and Kim, D.H.: Soft-template-carbonization route to highly textured mesoporous carbon-tio2 inverse opals for efficient photocatalytic and photoelectrochemical applications. Phys. Chem. Chem. Phys. 16, 90239030 (2014).Google Scholar
29.Kwon, K.C., Choi, S., Hong, K., Andoshe, D.M., Suh, J.M., Kim, C., Choi, K.S., Oh, J.H., Kim, S.Y., and Jang, H.W.: Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production. MRS Commun. 7, 272279 (2017).CrossRefGoogle Scholar
30.Thorne, J.E., Zhao, Y., He, D., Fan, S., Vanka, S., Mi, Z., and Wang, D.: Understanding the role of co-catalysts on silicon photocathodes using intensity modulated photocurrent spectroscopy. Phys. Chem. Chem. Phys. 19, 2965329659 (2017).CrossRefGoogle ScholarPubMed
31.Esposito, D.V., Levin, I., Moffat, T.P., and Talin, A.A.: H2 evolution at Si-based metal–insulator–semiconductor photoelectrodes enhanced by inversion channel charge collection and H spillover. Nat. Mater. 12, 562 (2013).Google Scholar
32.Stoerzinger, K.A., Comes, R., Spurgeon, S.R., Thevuthasan, S., Ihm, K., Crumlin, E.J., and Chambers, S.A.: Influence of LaFeO3 surface termination on water reactivity. J. Phys. Chem. Lett. 8, 10381043 (2017).Google Scholar
33.Favaro, M., Abdi, F.F., Lamers, M., Crumlin, E.J., Liu, Z., van de Krol, R., and Starr, D.E.: Light-induced surface reactions at the bismuth vanadate/potassium phosphate interface. J. Phys. Chem. B 122, 801809 (2018).CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Stoerzinger et al. supplementary material

Figures S1-S10 and Table S1

Download Stoerzinger et al. supplementary material(PDF)
PDF 661.1 KB