Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T14:39:49.471Z Has data issue: false hasContentIssue false

Biosilica/polydopamine/silver nanoparticles composites: new hybrid multifunctional heterostructures obtained by chemical modification of Thalassiosira weissflogii silica shells

Published online by Cambridge University Press:  11 June 2018

Danilo Vona
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona 4, 70126 Bari, Italy
Stefania Roberta Cicco
Affiliation:
CNR-ICCOM – Bari, Via Orabona 4, 70126 Bari, Italy
Roberta Ragni
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona 4, 70126 Bari, Italy
Gabriella Leone
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona 4, 70126 Bari, Italy IIT-Center for Nano Science and Technology, Via Giovanni Pascoli, 70, 20133 Milano, Italy
Marco Lo Presti
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona 4, 70126 Bari, Italy
Gianluca Maria Farinola*
Affiliation:
Università degli Studi di Bari «Aldo Moro», Via Orabona 4, 70126 Bari, Italy
*
Address all correspondence to Gianluca Maria Farinola at gianlucamaria.farinola@uniba.it
Get access

Abstract

Biosilica from living diatom microalgae has recently attracted the interest of the scientific community and found several applications in bio-nanotechnology. Among silica-maker organisms, diatom microalgae represent the most attractive marine microorganisms, featuring highly hierarchical, nanotextured and porous silica walls. These biologic structures, known as “frustules” are also chemically addressable via simple chemical synthesis. In this work, we propose new diatom-based hybrid materials consisting of biosilica extracted from living Thalassiosira weissflogii coated with polydopamine (PDA) films. The adhesion properties of the PDA were exploited to decorate the silica surface with silver nanoparticles. These multifunctional heterostructures can be useful for applications ranging from bioelectronics to biomedicine.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Patwardhan, S.V., Mukherjee, N., Steinitz-Kannan, M., and Clarson, S.J.: Bioinspired synthesis of new silica structures. Chem. Commun. 10, 11221123 (2003).Google Scholar
2.Fernandes, F.M., Coradin, T., and Aimé, C.: Self-assembly in biosilicification and biotemplated silica materials. Nanomaterials 4, 792812 (2014).Google Scholar
3.Müller, W.E.G., and Grachev, M.A.: Biosilica in Evolution, Morphogenesis, and Nanobiotechnology: Case Study Lake Baikal (Springer, 47, Berlin, 2009) Springer Science & Business Media, pp. 173184.Google Scholar
4.Vrieling, E.G., Gieskes, W.W.C., and Beelen, T.P.M.: Silicon deposition in diatoms: control by the pH inside the silicon deposition vesicle. J. Phycol. 35, 548559 (1999).Google Scholar
5.De Tommasi, E., Gielis, J., and Rogato, A.: Diatom frustule morphogenesis and function: a multidisciplinary survey. Mar. Genomics 35, 118 (2017).Google Scholar
6.Ragni, R., Cicco, S.R., Vona, D., Leone, G., and Farinola, G.M.: Biosilica from diatoms microalgae: smart materials from bio-medicine to photonics. J. Mater. Res. 32, 279291 (2017).Google Scholar
7.Vona, D., Lo Presti, M., Cicco, S.R., Palumbo, F., Ragni, R., and Farinola, G.M.: Light emitting silica nanostructures by surface functionalization of diatom algae shells with a triethoxysilane-functionalized π-conjugated fluorophore. MRS Adv. 1, 38173823 (2015).Google Scholar
8.Cicco, S.R., Vona, D., Gristina, R., Sardella, E., Ragni, R., Lo Presti, M., and Farinola, G.M.: Biosilica from living diatoms: investigations on biocompatibility of bare and chemically modified Thalassiosira weissflogii silica shells. Bioengineering 3, 119 (2016).Google Scholar
9.Leone, G., Vona, D., Lo Presti, M., Urbano, L., Cicco, S., Gristina, R., Palumbo, F., Ragni, R., and Farinola, G.M.: Ca 2+-in vivo doped biosilica from living Thalassiosira weissflogii diatoms: investigation on Saos-2 biocompatibility. MRS Adv. 2, 10471058 (2017).Google Scholar
10.Ragni, R., Scotognella, F., Vona, D., Moretti, L., Altamura, E., Ceccone, G., Mehn, D., Cicco, S.R., Palumbo, F., Lanzani, G., and Farinola, G.M.: Hybrid photonic nanostructures by in vivo incorporation of an organic fluorophore into diatom algae. Adv. Funct. Mater. 1706214, 19 (2018).Google Scholar
11.Cicco, S.R., Vona, D., De Giglio, E., Cometa, S., Mattioli Belmonte, M., Palumbo, F., Ragni, R., and Farinola, G.M.: Chemically modified diatoms biosilica for bone cell growth with combined drug delivery and antioxidant properties. ChemPlusChem 80, 11041112 (2015).Google Scholar
12.Ragni, R., Cicco, S.R., Vona, D., and Farinola, G.M.: Multiple routes to smart nanostructured materials from diatom microalgae: a chemical perspective. Adv. Mater. 1704289, 123 (2017).Google Scholar
13.Dreyer, D.R., Miller, D.J., Freeman, B.D., Paul, D.R., and Bielawski, C.W.: Perspectives on poly(dopamine). Chem. Sci. 4, 37963802 (2013).Google Scholar
14.Ye, Q., Zhou, F., and Liu, W.: Bioinspired catecholic chemistry for surface modification. Chem. Soc. Rev. 40, 42444258 (2011).Google Scholar
15.Yu, M., Hwang, J., and Deming, T.J.: Role of L-3, 4-dihydroxyphenylalanine in mussel adhesive proteins. J. Amer. Chem. Soc. 121, 58255826 (1999).Google Scholar
16.Lee, H., Dellatore, S.M., Miller, W.M., and Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318, 426430 (2007).Google Scholar
17.Ho, C.C., and Ding, S.J.: Dopamine-induced silica–polydopamine hybrids with controllable morphology. Chem. Commun. 50, 36023605 (2014).Google Scholar
18.Ambrico, M., Ambrico, P.F., Ligonzo, T., Cardone, A., Cicco, S.R., D'Ischia, M., and Farinola, G.M.: From commercial tyrosine polymers to a tailored polydopamine platform: concepts, issues and challenges en route to melanin-based bioelectronics. J. Mater. Chem. C 3, 64136423 (2015).Google Scholar
19.Feng, J.J., Zhang, P.P., Wang, A.J., Liao, Q.C., Xi, J.L., and Chen, J.R.: One-step synthesis of monodisperse polydopamine-coated silver core–shell nanostructures for enhanced photocatalysis. New J. Chem. 36, 148154 (2012).Google Scholar
20.Wang, N., Zhang, D., Deng, X., Sun, Y., Wang, X., Ma, P., and Song, D.: A novel surface plasmon resonance biosensor based on the PDA-AgNPs-PDA-Au film sensing platform for horse IgG detection. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 191, 290295 (2018).Google Scholar
21.Yang, Z., Wu, Y., Wang, J., Cao, B., and Tang, C.Y.: In situ reduction of silver by polydopamine: a novel antimicrobial modification of a thin-film composite polyamide membrane. Environ. Sci. Technol. 50, 95439550 (2016).Google Scholar
22.Choi, G.H., Rhee, D.K., Park, A.R., Oh, M.J., Hong, S., Richardson, J.J., Guo, J., Caruso, F., and Yoo, P.J.: Ag nanoparticle/polydopamine-coated inverse opals as highly efficient catalytic membranes. ACS Appl. Mater. Int. 8, 32503257 (2016).Google Scholar
23.Park, M.V., Neigh, A.M., Vermeulen, J.P., de la Fonteyne, L.J., Verharen, H.W., Briedé, J.J., and de Jong, W.H.: The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials 32, 98109817 (2011).Google Scholar
24.Chen, X., Yan, Y., Müllner, M., van Koeverden, M.P., Noi, K.F., Zhu, W., and Caruso, F.: Engineering fluorescent poly(dopamine) capsules. Langmuir 30, 29212925 (2014).Google Scholar
25.Yanlan, L., Kelong, A., and Lehui, L.: Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 50575115 (2014).Google Scholar
26.Wei, Q., Zhang, F., Li, J., Li, B., and Zhao, C.: Oxidant-induced dopamine polymerization for multifunctional coatings. Polym. Chem. 1, 14301433 (2010).Google Scholar
27.Adamo, I., Ghisoli, C., and Caucia, F.: A contribution to the study of FTIR spectra of opals. Neues Jb. Mineral. Abh. 187, 6368 (2010).Google Scholar
28.Zangmeister, R.A., Todd. Morris, A., and Tarlov, M.J.: Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 29, 86198628 (2013).Google Scholar
29.Natsuki, J., Natsuki, T., and Hashimoto, Y.: A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 4, 325332 (2015).Google Scholar
30.Srikar, S.K., Giri, D.D., Pal, D.B., Mishra, P.K., and Upadhyay, S.N.: Green synthesis of silver nanoparticles: a review. Green Sustain. Chem. 6, 3556 (2016).Google Scholar
Supplementary material: File

Vona et al. supplementary material

Vona et al. supplementary material 1

Download Vona et al. supplementary material(File)
File 2.4 MB