Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-14T11:23:03.236Z Has data issue: false hasContentIssue false

Bio-inspired synthesis of superparamagnetic iron oxide nanoparticles for enhanced in vitro anticancer therapy

Published online by Cambridge University Press:  19 March 2018

Thangavel Shanmugasundaram
Affiliation:
Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore 641 046, Tamil Nadu, India
Manikkam Radhakrishnan
Affiliation:
Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology (Deemed to be University), Jeppiaar Nagar, Chennai 600 119, Tamil Nadu, India
Arasu Poongodi
Affiliation:
Department of Biochemistry, Sri Ramachandra University, Chennai 600 116, Tamil Nadu, India
Krishna Kadirvelu
Affiliation:
DRDO-BU Centre for Life Sciences, Bharathiar University Campus, Coimbatore 641 046, Tamil Nadu, India
Ramasamy Balagurunathan*
Affiliation:
Actinobacterial Research Laboratory, Department of Microbiology, Periyar University, Periyar Palkalai Nagar, Salem 636 011, Tamil Nadu, India
*
Address all correspondence to Ramasamy Balagurunathan at actinobalaguru@gmail.com
Get access

Abstract

Superparamagnetic iron oxide nanoparticles (SPIONPs) are successfully synthesized in this study by co-precipitation method using actinobacterial metabolites as reducing agent. Physicochemical and morphological features of the nanoparticles (NPs) are analyzed by Fourier-transform infrared spectroscopy, x-ray-based techniques, vibrating sample magnetometer, thermal gravimetric analysis, and electron microscopic analysis, with an average size of 15–30 nm. Anticancer activity of the magnetite-NPs is systematically evaluated on HeLa cells using MTT assay, Hoechst nuclear staining, acridine orange/ethidium bromide dual staining and flow cytometric analysis. The obtained results open a new route for biosynthesis of SPIONPs, which to be used for various biomedical applications, particularly in cancer therapy.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gupta, A. K. and Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 39954021 (2005).CrossRefGoogle ScholarPubMed
2.Xu, C. and Sun, S.: New forms of superparamagnetic nanoparticles for biomedical applications. Adv. Drug Deliv. Rev. 65, 732743 (2013).CrossRefGoogle ScholarPubMed
3.Hou, C., Zhou, L., Zhu, H., Wang, X., Hu, N., Zeng, F., Wang, L., and Yin, H.: Mussel-inspired surface modification of magnetic@graphite nanosheets composite for efficient Candida rugosa lipase immobilization. J. Ind. Microbiol. Biotechnol. 42, 723734 (2015).CrossRefGoogle ScholarPubMed
4.Wu, W., He, Q., and Jiang, C.: Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale Res. Lett. 3, 397415 (2008).CrossRefGoogle ScholarPubMed
5.Nagajyothi, P. C., Pandurangan, M., Kim, D. H., Sreekanth, T. V. M., and Shim, J.: Green synthesis of iron oxide nanoparticles and their catalytic and in vitro anticancer activities. J. Cluster Sci. 28, 245257 (2017).CrossRefGoogle Scholar
6.Qu, S., Yang, H., Ren, D., Kan, S., Zou, G., Li, D., and Li, M.: Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid Interface Sci. 215, 190192 (1999).CrossRefGoogle ScholarPubMed
7.Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 5563 (1983).CrossRefGoogle ScholarPubMed
8.Crowley, L.C., Marfell, B.J., and Waterhouse, N. J.: Analyzing cell death by nuclear staining with Hoechst 33342. Cold Spring Harb. Protoc. (2016) doi: 10.1101/pdb.prot087205.CrossRefGoogle ScholarPubMed
9.Ho, K. L., Yazan, L. S., Ismail, N., and Ismail, M.: Apoptosis and cell cycle arrest of human colorectal cancer cell line HT-29 induced by vanillin. Cancer Epidemiol. 33, 155160 (2009).CrossRefGoogle ScholarPubMed
10.Qi, S. N., Yoshida, A., Wang, Z. R., and Ueda, T.: GP7 can induce apoptotic DNA fragmentation of human leukemia cells through caspase-3-dependent and -independent pathways. Int. J. Mol. Med. 13, 163167 (2004).Google ScholarPubMed
11.Makarov, V. V., Makarova, S. S., Love, A. J., Sinitsyna, O. V., Dudnik, A. O., Yaminsky, I. V., Taliansky, M. E., and Kalinina, N. O.: Biosynthesis of stable iron oxide nanoparticles in aqueous extracts of Hordeum vulgare and Rumex acetosa plants. Langmuir 30, 59825988 (2014).CrossRefGoogle ScholarPubMed
12.Prabhu, Y. T., Venkateswara Rao, K., Siva Kumari, B., Kumar, V. S. S., and Pavani, T.: Synthesis of Fe3O4 nanoparticles and its antibacterial application. Int. Nano Lett. 5, 8592 (2015).CrossRefGoogle Scholar
13.Su, Y.L., Fang, J. H., Liao, C. Y., Lin, C. T., Li, Y. T., and Hu, S. H.: Targeted mesoporous iron oxide nanoparticles-encapsulated perfluorohexane and a hydrophobic drug for deep tumor penetration and therapy. Theranostics 5, 12331248 (2015).CrossRefGoogle Scholar
14.Rahman, O., Mohapatra, S. C., and Ahmad, S.: Fe3O4 inverse spinal super paramagnetic nanoparticles. Mater. Chem. Phys. 132, 196202 (2012).CrossRefGoogle Scholar
15.Mahdavi, M., Ahmad, M. B., Haron, M. J., Namvar, F., Nadi, B., Rahman, M. Z., and Amin, J.: Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications. Molecules 18, 75337548 (2013).CrossRefGoogle ScholarPubMed
16.Zhivotosky, B., and Orrenius, S.: Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. In Current Protocols in Cell Biology, edited by Bonifacino, J.S., Dasso, M., Harford, J. B., Schwartz, J. L. and Yamada, K. M. (John Wiley & Sons, Inc., New York, 2001), pp. 123.Google Scholar
17.Errami, Y., Naura, A.S., Kim, H., Ju, J., Suzuki, Y., El-Bahrawy, A.H., Ghonim, M.A., Hemeida, R.A., Mansy, M.S., and Zhang, J.: Apoptotic DNA fragmentation may be a cooperative activity between caspase-activated deoxyribonuclease and the poly (ADP-ribose) polymerase-regulated DNAS1L3, an endoplasmic reticulum-localized endonuclease that translocates to the nucleus during apoptosis. J. Biol. Chem. 288, 34603468 (2013).CrossRefGoogle Scholar