Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T00:32:02.913Z Has data issue: false hasContentIssue false

Band gap narrowing of cadmium oxide powder by rare earth praseodymium doping

Published online by Cambridge University Press:  05 March 2013

H.-Y. He*
Affiliation:
Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
J. Lu
Affiliation:
Key Laboratory of Auxiliary Chemistry & Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
*
Address all correspondence to H.-Y. He athehy@sust.edu.cn
Get access

Abstract

Rare earth Pr-doped cadmium oxide (CdO) powders with various Pr contents (0–2.0 at.%) were synthesized by a coprecipitation process and characterized by x-ray diffraction, field emission scanning electron microscopy, and UV-vis spectrophotometry. The experimental results indicate that Pr doping led to a decrease of average particle size and change of optical property. The CdO powder with Pr content 0.5 at.% show a maximum Eg decrease of about 3.6% and an absorbance increase of about 8.26%. This variation is explained by the available band gap narrowing models and variations in lattice parameter and density with Pr content.

Type
Research Letters
Copyright
Copyright © Materials Research Society 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Zhao, Z., Morel, D.L., and Ferekides, C.S.: Electrical and optical properties of tin-doped CdO films deposited by atmospheric metalorganic chemical vapor deposition. Thin Solid Films 413, 203 (2002).Google Scholar
2.Su, L.M., Grote, N., and Schmitt, F.: Diffused planar InP bipolar transistor with a cadmium oxide film emitter. Electron. Lett. 20, 716 (1984).CrossRefGoogle Scholar
3.Gomez Daza, O., Arias-Carbajal Readigos, A., Campos, J., Nair, M.T.S., and Nair, P.K.: Formation of conductive CdO thin films on photoconductive CdS thin films for window layer applications in solar cells. Modern Phys. Lett. B 17, 609 (2001).Google Scholar
4.Lewis, B.J. and Paine, D.C.: Applications and processing of transparent conducting oxides. MRS Bull. 25, 22 (2000).Google Scholar
5.Yan, M., Lane, M., Kannewurf, C.R., and Chang, R.P.H.: Highly conductive epitaxial CdO thin films prepared by pulsed laser deposition. Appl. Phys. Lett. 78, 02342 (2001).CrossRefGoogle Scholar
6.Carballeda-Galicia, D.M., Castanedo-Perez, R., Jimenez-Sandoval, O., Jimenez-Sandoval, S., Torres-Delgado, G., and Zuniga-Romero, C.I.: Nitrogen K-shell excitations in gold(I) and silver(I) dicyanide KM(CN)2 (M = Au, Ag) by XANES spectroscopy. Thin Solid Films 371, 105 (2000).Google Scholar
7.Chopra, K.L. and Ranjan Das, S.: Thin Film Solar Cells (Plenum Press, New York, 1993).Google Scholar
8.Choi, Y.S., Lee, C.G., and Choi, S.M.: Transparent conducting ZnxCd1−xO thin films prepared by the sol-gel process. Thin Solid Films 289, 153 (1996).Google Scholar
9.Kondo, R., Okhimura, H., and Sakai, Y.: Electrical properties of semiconductor photodiodes with semitransparent films. Jpn. J. Appl. Phys. 10, 1547 (1971).CrossRefGoogle Scholar
10.Maity, R. and Chattopadhyay, K.K.: Synthesis and characterization of aluminum-doped CdO thin films by sol–gel process. Sol. Energy Mater. Sol. Cells 90, 597 (2006).Google Scholar
11.Shu, S., Yang, Y., Medvedova, J.E., Ireland, J.R., Metz, A.W., Ni, J., Kannewurf, C.R., Freeman, A.J., and Tobin, T.J.: Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD. J. Am. Chem. Soc. 126, 13787 (2004).Google Scholar
12.Gupta, R.K., Ghosh, K., Patel, R., Mishra, S.R., and Kahol, P.K.: Structural, optical and electrical properties of In doped CdO thin films for optoelectronic applications. Mater. Lett. 62, 3373 (2008).Google Scholar
13.Wang, A., Babcock, J.R., Edleman, N.L., Metz, A.W., Lane, M.A., Asahi, R., Dravid, V.P., Kannewurf, C.R., Freeman, A.J., and Marks, T.J.: Indium-cadmium-oxide films having exceptional electrical conductivity and optical transparency: clues for optimizing transparent conductors. Appl. Phys. Sci. 98, 7113 (2001).Google ScholarPubMed
14.Dakhel, A.A.: Effect of thallium doping on the electrical and optical properties of CdO thin films. Phys. Stat. Sol. 205, 2704 (2008).Google Scholar
15.Dakhel, A.A.: Transparent conducting properties of samarium-doped CdO. J. Alloys Compd. 475, 51 (2009).Google Scholar
16.Dakhel, A.A.: Effect of cerium doping on the structural and optoelectrical properties of CdO nanocrystallite thin films. Mater. Chem. Phys. 130, 398 (2011).Google Scholar
17.Guptaa, R.K., Ghosh, K., Patel, R., and Kahol, P.K.: Low temperature processed highly conducting, transparent, and wide band gap Gd doped CdO thin films for transparent electronics. J. Alloys Compd. 509, 4146 (2011).CrossRefGoogle Scholar
18.Gupta, R.K., Serbetci, Z., and Yakuphanoglu, F.: Band gap variation in size controlled nanostructured Li-Ni co-doped CdO thin films. J. Alloys Compd. 515, 96 (2012).CrossRefGoogle Scholar
19.Lakshminarayana, G., Yang, H.-C., Teng, Y., and Qiu, J.-R.: Spectralanalysis of Pr3+-, Sm3+- and Dy3+-doped transparent GeO2–BaO–TiO2 glass ceramics. J. Lumin. 129, 59 (2009).Google Scholar
20.Mahlik, S., Behrendt, M., Grinberg, M., Cavalli, E., and Bettinelli, M.: Pressure effects on the luminescence properties of CaWO4:Pr3+. Opt. Mater. 34, 2012 (2012).CrossRefGoogle Scholar
21.Mazurak, Z., Body, S., Lisiecki, R., Gabryś-Pisarska, J., and Czaja, M.: Optical properties of Pr3+, Sm3+ and Er3+ doped P2O5–CaO–SrO–BaO phosphate glass. Opt. Mater. 32, 547 (2010).Google Scholar
22.Lakshminarayana, G. and Qiu, J.-R.: Photoluminescence of Pr3+, Sm3+ and Dy3+- doped SiO2–Al2O3–BaF2–GdF3 glasses. J. Alloys Compd. 476, 470 (2009).Google Scholar
23.Gu, M., Gao, Q.-C., Huang, S.-M., Liu, X.-L., Liu, B., and Chen, N.: Luminescence properties of Pr3+-doped transparent oxyfluoride glass ceramics containing BaYF5 nanocrystals. J. Lumin. 132, 2531 (2012).CrossRefGoogle Scholar
24.Dakhel, A.A.: Influence of dysprosium doping on the electrical and optical properties of CdO thin films. Solar Energy 83, 934 (2009).Google Scholar
25.Kawamura, K., Maekawa, K., Yanagi, H., Hirano, M., and Hosono, H.: Observation of carrier dynamics in CdO thin films by excitation with femtosecond laser pulse. Thin Solid Films 445, 182 (2003).CrossRefGoogle Scholar
26.Ueda, N., Maeda, H., Hosono, H., and Kawazoe, H.: Band-gap widening of CdO thin films. J. Appl. Phys. 84, 6174 (1998).Google Scholar
27.Xu, Y. and Schoonen, M.A.A.: The absolute energy positions of conduction and valence bands of selected semiconducting minerals. American Mineralogist 85, 543 (2000).CrossRefGoogle Scholar
28.Camassel, J., Auvergne, D., and Mathieu, H.: Temperature dependence of the band gap and comparison with the threshold frequency of pure GaAs lasers. J. Appl. Phys. 46, 2683 (1975).CrossRefGoogle Scholar