Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T15:38:03.336Z Has data issue: false hasContentIssue false

Three-Dimensional Microfabrication by Two-Photon Lithography

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The controlled formation of submicrometer-scale structures in three dimensions is of increasing interest in many applications. Not intended to produce the smallest structures, but instead aimed at complex topographies, two-photon lithography is an intrinsic 3D lithography technique that enables the fabrication of structures difficult to access by conventional single-photon processes with far greater spatial resolution than other 3D microfabrication techniques. By tightly focusing a femtosecond laser beam into a resin, subsequent photo-induced reactions such as polymerization occur only in the close vicinity of the focal point, allowing the fabrication of a 3D structure by directly writing 3D patterns. The current research effort in two-photon lithography is largely devoted to the design and synthesis of high-efficiency photoinitiators and sensitizers, as well as the development of new materials and systems. This article provides an overview of the progress in two-photon processes for the formation of complex images and the development of patterned structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Horiyama, M., Sun, H.-B., Miwa, M., Matsuo, S., and Misawa, H., Jpn. J. Appl. Phys. 38 (1999) p. L212.CrossRefGoogle Scholar
2.Kawata, S., Sun, H.-B., Tanaka, T., and Takada, K., Nature 412 (2001) p. 697.CrossRefGoogle Scholar
3.Tanaka, T., Sun, H.-B., and Kawata, S., Appl. Phys. Lett 80 (2002) p. 312.CrossRefGoogle Scholar
4.Pao, Y.-H. and Rentzepis, P.M., Appl. Phys. Lett. 6 (1965) p. 93.CrossRefGoogle Scholar
5.Albota, M., Beljonne, D., Brédas, J.-L., Ehrlich, J.E., Fu, J.-Y., Heikal, A.A., Hess, S.E., Kogej, T., Levin, M.D., Marder, S.R., McCord-Maughton, D., Perry, J.W., Rockel, H., Rumi, M., Subramaniam, G., Webb, W.W., and Wu, X.-L., Science 281 (1998) p. 1653.CrossRefGoogle Scholar
6.Schafer, K.J., Hales, J.M., Balu, M., Belfield, K.D., Van Stryland, E.W., and Hagan, D.J., J. Photochem. Photobiol. A: Chem. 162 (2004) p. 497.CrossRefGoogle Scholar
7.Cumpston, B.H., Ananthavel, S.P., Barlow, S., Dyer, D.L., Ehrlich, J.E., Erskine, L.L., Heikal, A.A., Kuebler, S.M., Sandy Lee, I.-Y., McCord-Maughton, D., Qin, J., Rockel, H., Rumi, M., Wu, X.-L., Marder, S.R., and Perry, J.W., Nature 398 (1999) p. 51.CrossRefGoogle Scholar
8.Rumi, M., Ehrlich, J.E., Heikal, A.A., Perry, J.W., Barlow, S., Hu, Z., McCord-Maughton, D., Parker, T.C., Rockel, H., Thayumanayan, S., Marder, S.R., Beljonne, D., and Brédas, J.-L., J. Am. Chem. Soc. 122 (2000) p. 9500.CrossRefGoogle Scholar
9.Reinhardt, B.A., Brott, L.L., Clarson, S.J., Dillard, A.G., Bhatt, J.C., Kannan, R., Yuan, L., He, G.S., and Prasad, P.N., Chem. Mater. 10 (1998) p. 1863.CrossRefGoogle Scholar
10.Chung, S.-J., Kim, M.-S., Lin, T.-C., He, G.S., Swiatkiewicz, J., and Prasad, P.N., J. Phys. Chem. B 103 (1999) p. 10741.CrossRefGoogle Scholar
11.He, G.S., Lin, T.-C., Dai, J., Prasad, P.N., Kannan, R., Dombroskie, A.G., Vaia, R.A., and Tan, L.-S., J. Chem. Phys. 120 (2004) p. 5275.CrossRefGoogle Scholar
12.Kim, O.-K., Lee, K.-S., Woo, H.Y., Kim, K.-S., He, G.S., Swiatkiewicz, J., and Prasad, P.N., Chem. Mater. 12 (2000) p. 284.CrossRefGoogle Scholar
13.Kannan, R., He, G.S., Yuan, L., Xu, F., Prasad, P.N., Dombroskie, A.G., Reinhardt, B.A., Baur, J.W., Vaia, R.A., and Tan, L.-S., Chem. Mater. 13 (2001) p. 1896.CrossRefGoogle Scholar
14.Andronov, A., Fréchet, J. M. J., He, G.S., Kim, K.-S., Chung, S.-J., Swiatkiewicz, J., and Prasad, P.N., Chem. Mater. 12 (2000) p. 2838.CrossRefGoogle Scholar
15.Belfield, K.D., Schafer, K.J., and Mourad, W., J. Org. Chem. 65 (2000) p. 4475.CrossRefGoogle Scholar
16.Belfield, K.D., Hagan, D.J., Van Stryland, E.W., Schafer, K.J., and Negres, R.A., Org. Lett. 1 (1999) p. 1575.CrossRefGoogle Scholar
17.Belfield, K.D., Schafer, K.J., and Alexander, M.D.J., Chem. Mater. 12 (2000) p. 1184.CrossRefGoogle Scholar
18.Belfield, K.D., Schafer, K.J., Liu, Y., Liu, J., Ren, X., and Van Stryland, E.W., J. Phys. Org. Chem. 13 (2000) p. 837.3.0.CO;2-5>CrossRefGoogle Scholar
19.Belfield, K.D., Ren, X., Van Stryland, E.W., Hagan, D.J., Dubikovsky, V., and Miesak, E.J., J. Am. Chem. Soc. 122 (2000) p. 1217.CrossRefGoogle Scholar
20.Campagnola, P.J., Delguidice, D.M., Epling, G.A., Hoffacker, K.D., Howell, A.R., Pitts, J.D., and Goodman, S.L., Macromolecules 33 (2000) p. 1511.CrossRefGoogle Scholar
21.Pitts, J.D., Campagnola, P.J., Epling, G.A., and Goodman, S.L., Macromolecules 33 (2000) p. 1514.CrossRefGoogle Scholar
22.Li, C., Luo, L., Wang, S., Huang, W., Gong, Q., Yang, Y., and Feng, S., Chem. Phys. Lett. 340 (2001) p. 444.CrossRefGoogle Scholar
23.Lu, Y., Hasegawa, F., Ohkuma, S., Goto, T., Fukuhara, S., Kawazu, Y., Totani, K., Yamashita, T., and Watanabe, T., J. Mater. Chem. 14 (2004) p. 1391.CrossRefGoogle Scholar
24.Maruo, S., Nakamura, O., and Kawata, S., Opt. Lett. 22 (1997) p. 132.CrossRefGoogle Scholar
25.Sun, H.-B., Tanaka, T., and Kawata, S., Appl. Phys. Lett 80 (2002) p. 3673.CrossRefGoogle Scholar
26.Sun, H.-B., Nakahama, T., Shoji, S., Duan, X.-M., and Kawata, S., Adv. Mater. 15 (2003) p. 2011.CrossRefGoogle Scholar
27.Sun, H.-B., Matsuo, S., and Misawa, H., Appl. Phys. Lett. 74 (1999) p. 786.CrossRefGoogle Scholar
28.Straub, M. and Gu, M., Opt. Lett. 27 (2002) p. 1824.CrossRefGoogle Scholar
29.Shoji, S. and Kawata, S., Appl. Phys. Lett 76 (2000) p. 2668.CrossRefGoogle Scholar
30.Sun, H.-B., Tanaka, T., Takada, K., and Kawata, S., Appl. Phys. Lett. 79 (2001) p. 1411.CrossRefGoogle Scholar
31.Sun, H.-B., Mizeikis, V., Xu, Y., Juodkazis, S., Ye, J.-Y., Matsuo, S., and Misawa, H., Appl. Phys. Lett 79 (2001) p. 1.CrossRefGoogle Scholar
32.Sun, H.-B., Kawakami, T., Xu, Y., Ye, J.-Y., Matuso, S., Misawa, H., Masafumi, M., and Kaneko, R., Opt. Lett. 25 (2000) p. 1110.CrossRefGoogle Scholar
33.Tanaka, T. and Kawata, S., Proc. SPIE 3937 (2000) p. 92.CrossRefGoogle Scholar
34.Kawata, S. and Sun, H.-B., J. Photopolym. Sci. Technol. 15 (2002) p. 471.CrossRefGoogle Scholar
35.Sun, H.-B., Takada, K., Kim, M.-S., Lee, K.-S., and Kawata, S., Appl. Phys. Lett 83 (2003) p. 1104.CrossRefGoogle Scholar
36.Sun, H.-B., Maeda, M., Takada, K., Chon, J.W.M., Gu, M., and Kawata, S., Appl. Phys. Lett 83 (2003) p. 818.Google Scholar
37.Despont, M., Lorenz, H., Fahrni, N., Brugger, J., Renaud, P., and Vettiger, P., IEEE Proc. MEMS (1997) p. 518.Google Scholar
38.Witzgall, G., Vrijen, R., Yablonovitch, E., Doan, V., and Schwartz, B.J., Opt. Lett. 23 (1998) p. 1745.CrossRefGoogle Scholar
39.Yin, X., Fang, N., Zhang, X., Martini, I.B., and Schwartz, B.J., Appl. Phys. Lett. 81 (2002) p. 3663.CrossRefGoogle Scholar
40.Teh, W.H., Dürig, U., Sallis, G., Harbers, R., Drechsler, U., Maht, R.F., Smith, C.G., and Güntherodt, H.-J., Appl. Phys. Lett. 84 (2004) p. 4095.CrossRefGoogle Scholar
41.Haas, K.-H., Adv. Eng. Mater. 2 (2000) p. 571.3.0.CO;2-M>CrossRefGoogle Scholar
42.Serbin, J., Egbert, A., Ostendorf, A., Chichkov, B.N., Houbertz, R., Domann, G., Schulz, J., Cronauer, C., Fröhlich, L., and Popall, M., Opt. Lett. 28 (2003) p. 301.CrossRefGoogle Scholar
43.Houbertz, R., Fröhlich, L., Popall, M., Streppel, U., Dannberg, P., Bräuer, A., Serbin, J., and Chichkov, B.N., Adv. Eng. Mater. 5 (2003) p. 551.CrossRefGoogle Scholar
44.LaFratta, C.N., Baldacchini, T., Farrer, R.A., Fourkas, J.T., Teich, M.C., Saleh, B.E.A., and Naughton, M.J., J. Phys. Chem. B 108 (2004) p. 11256.CrossRefGoogle Scholar
45.Yang, H.-K., Kim, M.-S., Kang, S.-W., Kim, K.-S., Lee, K.-S., Park, S.H., Yang, D.-Y., Kong, H.J., Sun, H.-B., Kawata, S., and Fleitz, P., J. Photopolym. Sci. Technol. 17 (2004) p. 385.CrossRefGoogle Scholar
46.Coenjarts, C.A. and Ober, C. K., Chem. Mater. 16 (2004) p. 5556.CrossRefGoogle Scholar
47.Baldacchini, T., LaFratta, C.N., Farrer, R.A., Teich, M.C., Saleh, B.E.A., Naughton, M.J., and Fourkas, J.T., J. Appl. Phys. 95 (2004) p. 6072.CrossRefGoogle Scholar
48.Nguyen, L.H., Straub, M., and Gu, M., Adv. Funct. Mater. 15 (2005) p. 209.CrossRefGoogle Scholar
49.Boiko, Y., Costa, J.M., Wang, M., and Esener, S., Opt. Express 8 (2001) p. 571.CrossRefGoogle Scholar
50.Murakami, Y., Coenjarts, C.A., and Ober, C.K., J. Photopolym. Sci. Technol. 17 (2004) p. 115.CrossRefGoogle Scholar
51.Zhou, W., Kuebler, S.M., Braun, K., Yu, T., Cammack, J.K., Ober, C.K., Perry, J.W., and Marder, S.R., Science 296 (2002) p. 1106.CrossRefGoogle Scholar
52.Yu, T., Ober, C.K., Kuebler, S.M., Zhou, W., Marder, S.R., and Perry, J.W., Adv. Mater. 15 (2003) p. 517.CrossRefGoogle Scholar
53.Lee, W., Pruzinsky, S.A., and Braun, P.V., Adv. Mater. 14 (2002) p. 271.3.0.CO;2-Y>CrossRefGoogle Scholar
54.Stellacci, F., Bauer, C.A., Meyer-Friedrichsen, T., Wenseleers, W., Alain, V., Kuebler, S.M., Pond, S.J.K., Zhang, Y., Marder, S.R., and Perry, J.W., Adv. Mater. 14 (2002) p. 194.3.0.CO;2-W>CrossRefGoogle Scholar
55.Duan, X.-M., Sun, H.-B., Kaneko, K., and Kawata, S., Thin Solid Films 453454 (2004) p. 518.CrossRefGoogle Scholar
56.Basu, S. and Campagnola, P.J., J. Biomed. Mater. Res. A 71A (2) (2004) p. 359.CrossRefGoogle Scholar
57.Basu, S. and Campagnola, P.J., Biomacromolecules 5 (2004) p. 572.CrossRefGoogle Scholar
58.Tormen, M., Businaro, L., Altissimo, M., Romanato, F., Cabrini, S., Perennes, F., Proietti, R., Sun, H.-B., Kawata, S., and Di Fabrizio, E., Microelectron. Eng. 7374 (2004) p. 535.CrossRefGoogle Scholar