Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T05:36:19.527Z Has data issue: false hasContentIssue false

Steps toward efficient inorganic–organic hybrid perovskite solar cells

Published online by Cambridge University Press:  07 August 2015

Jun Hong Noh
Affiliation:
Division of Advanced Materials, Korea Research Institute of Chemical Technology, South Korea; jhnoh@krict.re.kr
Sang Il Seok
Affiliation:
Division of Advanced Materials, Korea Research Institute of Chemical Technology, South Korea; seoksi@krict.re.kr; Department of Energy Science, Sungkyunkwan University, Korea; seoksi@skku.edu
Get access

Abstract

Crystalline silicon dominates the solar panel industry today but remains relatively expensive to manufacture. If devices could be fabricated from inexpensive materials by a simple solution process without the need for high-temperature annealing, their cost could be considerably reduced. Recently, inorganic–organic (I/O) hybrid systems based on inorganic nanoparticles (including quantum dots) and perovskite materials as light harvesters with organic hole-conducting materials have shown great potential for efficient solar cells due to the combination of superior optical properties and solution-based processes. In this review, we describe the relevant morphological factors and the performance of perovskite solar cells with tuned heterojunctions. In particular, we describe the mediator retarding the rapid crystallization of perovskite layers for a bilayer configuration. Appropriate processes and chemical engineering induced the formation of well-crystallized perovskite materials with extremely uniform and dense perovskite layers and remarkably improved the performance of the cells with a National Renewable Energy Laboratory (NREL)-certified record efficiency of 20.1%.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

O’Regan, B., Grätzel, M., Nature 353, 737 (1991).CrossRefGoogle Scholar
Brabec, C.J., Gowrisanker, S., Halls, J.J., Laird, D., Jia, S., Williams, S.P., Adv. Mater. 22 (34), 3839 (2010).CrossRefGoogle Scholar
Chang, J.A., Rhee, J.H., Im, S.H., Lee, Y.H., Kim, H.-j., Seok, S.I., Nazeeruddin, M.K., Grätzel, M., Nano Lett. 10 (7), 2609 (2010).CrossRefGoogle Scholar
Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T., J. Am. Chem. Soc. 131 (17), 6050 (2009).CrossRefGoogle Scholar
Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Sci. Rep. 2, 591 (2012).CrossRefGoogle Scholar
Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Science 338 (6107), 643 (2012).CrossRefGoogle Scholar
Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H.-j., Sarkar, A., Nazeeruddin, M.K., Nat. Photonics 7 (6), 486 (2013).CrossRefGoogle Scholar
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M., Nature 499 (7458), 316 (2013).CrossRefGoogle Scholar
Vogel, R., Hoyer, P., Weller, H., J. Phys. Chem. 98 (12), 3183 (1994).CrossRefGoogle Scholar
Plass, R., Pelet, S., Krueger, J., Grätzel, M., Bach, U., J. Phys. Chem. B 106 (31), 7578 (2002).CrossRefGoogle Scholar
Lee, Y.L., Lo, Y.S., Adv. Funct. Mater. 19 (4), 604 (2009).CrossRefGoogle Scholar
Lee, H.J., Chen, P., Moon, S.-J., Sauvage, F., Sivula, K., Bessho, T., Gamelin, D.R., Comte, P., Zakeeruddin, S.M., Seok, S.I., Langmuir 25 (13), 7602 (2009).CrossRefGoogle Scholar
Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G., Nanoscale 3 (10), 4088 (2011).CrossRefGoogle Scholar
Im, S.H., Lim, C.-S., Chang, J.A., Lee, Y.H., Maiti, N., Kim, H.-J., Nazeeruddin, M.K., Grätzel, M., Seok, S.I., Nano Lett. 11 (11), 4789 (2011).CrossRefGoogle Scholar
Im, S.H., Kim, H.-J., Kim, S.W., Kim, S.-W., Seok, S.I., Energy Environ. Sci. 4 (10), 4181 (2011).CrossRefGoogle Scholar
Chang, J.A., Im, S.H., Lee, Y.H., Kim, H.-J., Lim, C.-S., Heo, J.H., Seok, S.I., Nano Lett. 12 (4), 1863 (2012).CrossRefGoogle Scholar
Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., Meredith, P., Nat. Photonics 9, 106 (2015).CrossRefGoogle Scholar
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J., Science 342 (6156), 341 (2013).CrossRefGoogle Scholar
D’Innocenzo, V., Grancini, G., Alcocer, M.J., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., Petrozza, A., Nat. Commun. 5, 3586 (2014).CrossRefGoogle Scholar
Liu, M., Johnston, M.B., Snaith, H.J., Nature 501 (7467), 395 (2013).CrossRefGoogle Scholar
Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I., Nat. Mater. 13, 897 (2014).CrossRefGoogle Scholar
Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.-W., Wojciechowski, K., Zhang, W., J. Phys. Chem. Lett. 5 (9), 1511 (2014).CrossRefGoogle Scholar
Frost, J.M., Butler, K.T., Walsh, A., APL Mater. 2 (8), 081506 (2014).CrossRefGoogle Scholar
Unger, E., Hoke, E., Bailie, C., Nguyen, W., Bowring, A., Heumüller, T., Christoforo, M., McGehee, M., Energy Environ. Sci. 7 (11), 3690 (2014).CrossRefGoogle Scholar
Zhang, Y., Liu, M., Eperon, G.E., Leijtens, T.C., McMeekin, D., Saliba, M., Zhang, W., De Bastiani, M., Petrozza, A., Herz, L.M., Mater. Horiz. 2 (3), 315 (2015).CrossRefGoogle Scholar
Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I., Nature 517 (7535), 476 (2015).CrossRefGoogle Scholar
Seo, J., Park, S., Kim, Y.C., Jeon, N.J., Noh, J.H., Yoon, S.C., Seok, S.I., Energy Environ. Sci. 7 (8), 2642 (2014).CrossRefGoogle Scholar
Ryu, S., Noh, J.H., Jeon, N.J., Kim, Y.C., Yang, W.S., Seo, J., Seok, S.I., Energy Environ. Sci. 7 (8), 2614 (2014).CrossRefGoogle Scholar
Im, J.-H., Jang, I.-H., Pellet, N., Grätzel, M., Park, N.-G., Nat. Nanotechnol. 9 (11), 927 (2014).CrossRefGoogle Scholar
Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y., J. Am. Chem. Soc. 136 (2), 622 (2013).CrossRefGoogle Scholar
Liang, P.W., Liao, C.Y., Chueh, C.C., Zuo, F., Williams, S.T., Xin, X.K., Lin, J., Jen, A.K.Y., Adv. Mater. 26 (22), 3748 (2014).CrossRefGoogle Scholar
Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., Snaith, H.J., Energy Environ. Sci. 7 (3), 982 (2014).CrossRefGoogle Scholar
Jeon, Y.-J., Lee, S., Kang, R., Kim, J.-E., Yeo, J.-S., Lee, S.-H., Kim, S.-S., Yun, J.-M., Kim, D.-Y., Sci. Rep. 4, 6953 (2014).CrossRefGoogle Scholar
Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I., Science (2015) doi: 10.1126/science.aaa9272.Google ScholarPubMed
Miyamae, H., Numahata, Y., Nagata, M., Chem. Lett. 9 (6), 663 (1980).CrossRefGoogle Scholar
Shockley, W., Queisser, H.J., J. Appl. Phys. 32 (3), 510 (1961).CrossRefGoogle Scholar
Pellet, N., Gao, P., Gregori, G., Yang, T.Y., Nazeeruddin, M.K., Maier, J., Grätzel, M., Angew. Chem. Int. Ed. 53 (12), 3151 (2014).CrossRefGoogle Scholar
Ogomi, Y., Morita, A., Tsukamoto, S., Saitho, T., Fujikawa, N., Shen, Q., Toyoda, T., Yoshino, K., Pandey, S.S., Ma, T., J. Phys. Chem. Lett. 5 (6), 1004 (2014).CrossRefGoogle Scholar
Tress, W., Marinova, N., Inganäs, O., Nazeeruddin, M., Zakeeruddin, S.M., Graetzel, M., Adv. Energy Mater. 5, 1400812 (2015).CrossRefGoogle Scholar
Liu, F., Zhu, J., Wei, J., Li, Y., Lv, M., Yang, S., Zhang, B., Yao, J., Dai, S., Appl. Phys. Lett. 104 (25), 253508 (2014).CrossRefGoogle Scholar
Shi, D., Adinolfi, V., Comin, R., Yuan, M., Alarousu, E., Buin, A., Chen, Y., Hoogland, S., Rothenberger, A., Katsiev, K., Science 347 (6221), 519 (2015).CrossRefGoogle Scholar
Noh, J.H., Jeon, N.J., Choi, Y.C., Nazeeruddin, M.K., Grätzel, M., Seok, S.I., J. Mater. Chem. A 1 (38), 11842 (2013).CrossRefGoogle Scholar
Jeon, N.J., Lee, H.G., Kim, Y.C., Seo, J., Noh, J.H., Lee, J., Seok, S.I., J. Am. Chem. Soc. 136 (22), 7837 (2014).CrossRefGoogle Scholar
Abate, A., Saliba, M., Hollman, D.J., Stranks, S.D., Wojciechowski, K., Avolio, R., Grancini, G., Petrozza, A., Snaith, H.J., Nano Lett. 14 (6), 3247 (2014).CrossRefGoogle Scholar
Park, J.H., Seo, J., Park, S., Shin, S.S., Kim, Y.C., Jeon, N.J., Shin, H.-W., Ahn, T.K., Noh, J.H., Yoon, S.C., Hwang, C.S., Seok, S.I., Adv. Mater. (2015) doi: 10.1002/adma.201500523.Google Scholar