Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T10:08:57.376Z Has data issue: false hasContentIssue false

Optical nonreciprocal devices for silicon photonics using wafer-bonded magneto-optical garnet materials

Published online by Cambridge University Press:  11 June 2018

Tetsuya Mizumoto
Affiliation:
Tokyo Institute of Technology, Japan; tmizumot@pe.titech.ac.jp
Roel Baets
Affiliation:
Ghent University, Belgium; roel.baets@ugent.be
John E. Bowers
Affiliation:
Departments of Electrical and Computer Engineering and Materials, University of California, Santa Barbara, USA; bowers@ece.ucsb.edu
Get access

Abstract

Optical isolators and circulators are important elements in many photonic systems. These nonreciprocal devices are typically made of bulk optical components and are difficult to integrate with other elements of photonic integrated circuits. This article discusses the best performance for waveguide isolators and circulators achieved with heterogeneous bonding. By virtue of the bonding technology, the devices can make use of a large magneto-optical effect provided by a high-quality single-crystalline garnet grown in a separate process on a lattice-matched substrate. In a silicon-on-insulator waveguide, the low refractive index of the buried oxide layer contributes to the large penetration of the optical field into a magneto-optical garnet used as an upper-cladding layer. This enhances the magneto-optical phase shift and contributes greatly to reducing the device footprint and the optical loss. Several versions of silicon waveguide optical isolators and circulators, both based on the magneto-optical phase shift, are demonstrated with an optical isolation ratio of ≥30 dB in a wavelength band of 1550 nm. Furthermore, the isolation wavelength can be effectively tuned over several tens of nanometers.

Type
Materials for Nonreciprocal Photonics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Petermann, K., IEEE J. Sel. Top. Quantum Electron. 1, 480 (1995).CrossRefGoogle Scholar
Wang, S., Shah, M., Crow, J.D., J. Appl. Phys. 43, 1861 (1972).CrossRefGoogle Scholar
Warner, J., IEEE Trans. Microw. Theory Tech. MTT-21, 769 (1973).CrossRefGoogle Scholar
Hepner, G., Desormiere, B., Castera, J.P., Appl. Opt. 14, 1479 (1975).CrossRefGoogle Scholar
Ando, K., Okoshi, T., Koshizuka, N., Appl. Phys. Lett. 53, 4 (1988).CrossRefGoogle Scholar
Mizumoto, T., Kawaoka, Y., Naito, Y., IEICE Trans. E69, 968 (1986).Google Scholar
Wolfe, R., Fratello, V.J., McGlashan-Powell, M., J. Appl. Phys. 63, 3099 (1988).CrossRefGoogle Scholar
Dötsch, H., Bahlmann, N., Zhuromskyy, O., Hammer, M., Wilkens, L., Gerhardt, R., Hertel, P., Popkov, A.F., J. Opt. Soc. Am. B. 22, 240 (2005).CrossRefGoogle Scholar
Levy, M., IEEE J. Sel. Top. Quantum Electron. 8, 1300 (2002).CrossRefGoogle Scholar
Hansen, P., Krume, J.P., Thin Solid Films 114, 69 (1984).CrossRefGoogle Scholar
Takei, R., Yoshida, K., Mizumoto, T., Jpn. J. Appl. Phys. 49, 086204 (2010).CrossRefGoogle Scholar
Mizumoto, T., Shoji, Y., Takei, R., Materials 5, 985 (2012).CrossRefGoogle Scholar
Roelkens, G., Brouckaert, J., Van Thourhout, D., Baets, R., Nötzel, R., Smit, M., J. Electrochem. Soc. 153, G1015 (2006).CrossRefGoogle Scholar
Tien, M.-C., Mizumoto, T., Pintus, P., Krömer, H., Bowers, J., Opt. Express 19, 11740 (2011).CrossRefGoogle Scholar
Geller, S., Espinosa, G.P., Crandall, P.B., J. Appl. Crystallogr. 2, 86 (1969).CrossRefGoogle Scholar
Hull, R., “Properties of crystalline silicon,” The Institution of Electrical Engineers, London, UK, pp. 91153 (1999).Google Scholar
Sung, S.-Y., Qi, X., Stadler, B.J.H., Appl. Phys. Lett. 87, 121111 (2005).CrossRefGoogle Scholar
Körner, T., Heinrich, A., Weckrle, A., Roocks, P., Stritzker, B., J. Appl. Phys. 103, 07B337 (2008).CrossRefGoogle Scholar
Bi, L., Hu, J., Dionne, G.F., Kimerling, L., Ross, C.A., Proc. SPIE 7941, 794105 (2011).CrossRefGoogle Scholar
Goto, T., Eto, Y., Kobayashi, K., Haga, Y., Inoue, M., Ross, C., J. Appl. Phys. 113, 17A939 (2013).CrossRefGoogle Scholar
Block, A.D., Dulal, P., Stadler, B.J.H., Seaton, N.C.A., IEEE Photonics J. 6, 0600308 (2014).CrossRefGoogle Scholar
Shoji, Y., Itoh, M., Shirato, Y., Mizumoto, T., Opt. Express 20, 18440 (2012).CrossRefGoogle Scholar
Ghosh, S., Keyvavinia, S., Van Roy, W., Mizumoto, T., Roelkens, G., Baets, R., Opt. Express 20, 1839 (2012).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Yokoi, H., Hsieh, I.W., Osgood, R.M. Jr., Appl. Phys. Lett. 92, 071117 (2008).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Sci. Technol. Adv. Mater. 15, 014602 (2014).CrossRefGoogle Scholar
Auracher, F., Witte, H.H., Opt. Commun. 13, 435 (1975).CrossRefGoogle Scholar
Mitsuya, K., Shoji, Y., Mizumoto, T., IEEE Photonics Technol. Lett. 25, 721 (2013).CrossRefGoogle Scholar
Shoji, Y., Mizumoto, T., Opt. Express 15, 639 (2007).CrossRefGoogle Scholar
Shoji, Y., Shirato, Y., Mizumoto, T., Jpn. J. Appl. Phys. 53, 022202 (2014).CrossRefGoogle Scholar
Furuya, K., Nemoto, T., Kato, K., Shoji, Y., Mizumoto, T., J. Lightwave Technol. 34, 1699 (2016).CrossRefGoogle Scholar
Huang, D., Pintus, P., Zhang, C., Shoji, Y., Mizumoto, T., Bowers, J.E., IEEE J. Sel. Top. Quantum Electron. 22, 4403408 (2016).Google Scholar
Huang, D., Pintus, P., Shoji, Y., Morton, P., Mizumoto, T., Bowers, J.E., Opt. Lett. 42, 4901 (2017).CrossRefGoogle Scholar
Kono, N., Kakihara, K., Saitoh, K., Koshiba, M., Opt. Express 15, 7737 (2007).CrossRefGoogle Scholar
Jalas, D., Petrov, A., Krause, M., Hampe, J., Eich, M., Opt. Lett. 35, 3438 (2010).CrossRefGoogle Scholar
Pintus, P., Tien, M.-C., Bowers, J.E., IEEE Photonics Technol. Lett. 23, 1670 (2011).CrossRefGoogle Scholar
Pintus, P., Huang, D., Zhang, C., Shoji, Y., Mizumoto, T., Bowers, J.E., J. Lightwave Technol. 35, 1429 (2017).CrossRefGoogle Scholar
Pintus, P., Di Pasquale, F., Bowers, J.E., Opt. Express 21, 5041 (2013).CrossRefGoogle Scholar
Jalas, D., Petrov, A.Y., Eich, M., Opt. Lett. 39, 1425 (2014).CrossRefGoogle Scholar
Huang, D., Pintus, P., Zhang, C., Morton, P., Shoji, Y., Mizumoto, T., Bowers, J.E., Optica 4, 23 (2017).CrossRefGoogle Scholar
Ghosh, S., Keyvaninia, S., Shirato, Y., Mizumoto, T., Roelkens, G., Baets, R., IEEE Photonics J. 5, 6601108 (2013).CrossRefGoogle Scholar
Ghosh, S., Keyvaninia, S., Van Roy, W., Mizumoto, T., Roelkens, G., Baets, R., Opt. Lett. 38, 965 (2013).CrossRefGoogle Scholar
Sun, X., Du, Q., Goto, T., Onbasli, M., Kim, D., Aimon, N., Hu, J., Ross, C., ACS Photonics 2, 7 (2015).Google Scholar
Shoji, Y., Miura, K., Mizumoto, T., J. Opt. 18, 1 (2015).Google Scholar