Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T23:02:58.089Z Has data issue: false hasContentIssue false

Multifunctional coating interlayers for thermal-barrier systems

Published online by Cambridge University Press:  09 October 2012

T.M. Pollock
Affiliation:
Materials Department, University of California, Santa Barbara; Pollock@engineering.ucsb.edu
D.M. Lipkin
Affiliation:
GE Global Research, Fairfield, CT; lipkin@ge.com
K.J. Hemker
Affiliation:
Department of Mechanical Engineering, Whiting School of Engineering, The Johns Hopkins University; hemker@jhu.edu
Get access

Abstract

The complex thermochemical and thermomechanical environments in high temperature propulsion and energy generation systems often demand the use of suites of materials with disparate properties. Unique combinations of materials that simultaneously function to optimize mechanical, thermal, and environmental properties can enable breakthroughs in design and system capability. This article focuses on interlayers that function as environmental barriers and promote adhesion of the ceramic thermal barriers to metallic substrates. The structure, composition, processing, and performance of major classes of bond coatings are briefly reviewed. Challenges for the development of new coating systems and for prediction of their performance in service are addressed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Reed, R.C., The Superalloys: Fundamentals and Applications (Cambridge University Press, UK, 2006).CrossRefGoogle Scholar
Evans, A.G., Clarke, D.R., Levi, C.G., J. Eur. Ceram. Soc. 28 (7), 1405 (2008).CrossRefGoogle Scholar
Meier, S.M., Gupta, D.K., Trans. ASME 116, 250 (1994).Google Scholar
Schulz, U., Leyens, C., Fritscher, K., Peters, M., Saruhan-Brings, B., Lavigne, O., Dorvaux, M., Poulain, M., Mévrel, R., Caliez, M.L., Aerosp. Sci. Technol. 7 (1), 73 (2003).CrossRefGoogle Scholar
DeMasi-Marcin, T., Gupta, D.K., Surf. Coat. Technol. 68/69, 1 (1994).CrossRefGoogle Scholar
Nicholls, J.R., MRS Bulletin 28, 659, (2003).CrossRefGoogle Scholar
Stiger, M.J., Yanar, N.M., Topping, M., Pettit, F.S., Meier, G.H., Z. Metallkd. 90, 1069 (1999).Google Scholar
Wright, P.K., Evans, A.G., Curr. Opin. Solid State Mater. Sci. 4, 255 (1999).CrossRefGoogle Scholar
Evans, A.G., Mumm, D.R., Hutchinson, J.W., Meier, G.H., Pettit, F.S., Prog. Mater Sci. 46, 505 (2001).CrossRefGoogle Scholar
Wu, R.T., Kawagishi, K., Harada, H., Reed, R.C., Acta Mater. 14, 3622 (2008).CrossRefGoogle Scholar
Smeggil, J.G., Funkenbush, A.W., Bornstein, N.S., Metall. Trans. A 17, 923 (1986).CrossRefGoogle Scholar
Smialek, J.L., in Microscopy of Oxidation 3, Newcomb, S.B., Little, J.A., Eds. (The Institute of Materials, London, UK, 1996), p. 127.Google Scholar
Hou, P.Y., Oxid. Met. 52, 337 (1999).CrossRefGoogle Scholar
Wright, I.G., Pint, B.A., Lee, W.Y., Alexander, K.B., Prüssner, K., in High Temperature Surface Engineering (The Institute of Materials, London, UK, 2000), p. 95.Google Scholar
Goward, G.W., Cannon, L.W., ASME Paper 87-GT-50 (ASME, New York, 1988).Google Scholar
Gauje, G.M.C.A., US Patent 3,486,927 (1969).Google Scholar
Levine, D.J., Levinstein, M.A., US Patent 3,540,878 (1970).Google Scholar
Levine, D.J., US Patent No. 3,598,638 (1971).Google Scholar
Wachtell, R.L., De Guisto, C.A., US Patent No. 3,073,015 (1963).Google Scholar
Bianco, R., Rapp, R.A., J. Electrochem. Soc. 140 (4), 1181 (1993).CrossRefGoogle Scholar
Wing, R.G., McGill, I.R., Platinum Met. Rev. 25 (3), 94 (1981).Google Scholar
Smith, J.S., Boone, D.H., ASME Paper 90-GT-319 (ASME, 1990).Google Scholar
Patnaik, P.C., Thamburaj, R., Sudarshan, T.S., in Surface Modification Technologies III, Sudarshan, T.S., Bhat, D.G., Eds. (TMS, Warrendale, PA, 1990), p. 759.Google Scholar
Strangman, T.E., US Patent 5,514,482 (1996).Google Scholar
McGill, I.R., Selman, G.L., US Patent 4,399,199 (1983).Google Scholar
Tatlock, G.J., Hurd, T.J., Oxid. Met. 22, 201 (1984).CrossRefGoogle Scholar
Nagaraj, B.A., Connor, W.B., Jendrix, R.W., Wortman, D.J., Plemmons, L.W., US Patent 5,427,866 (1995).Google Scholar
Rickerby, D.S., Bell, S.R., Wing, R.G., US Patent 5,667,663 (1997).Google Scholar
Sampath, S., Jiang, X.Y., Matejicek, J., Prchlik, L., Kulkarni, A., Vaidya, A., Mater. Sci. Eng., A 364, 216 (2004).CrossRefGoogle Scholar
Boone, D.H., Shen, S., McKoon, R., Thin Solid Films 64 (2), 299 (1979).CrossRefGoogle Scholar
Shankar, S., Koenig, D.E., Dardi, L.E., J. Met. 33 (10), 13 (1981).Google Scholar
Jackson, J.E., US Patent No. 3,470,347 (1969).Google Scholar
Taylor, T.A., Overs, M.P., Gill, B.J., Tucker, R.C., J. Vac. Sci. Technol., A 3 (6), 2526 (1985).CrossRefGoogle Scholar
Browning, J.A., US Patent 5,120,582 (1992).Google Scholar
Russo, L., Dorfman, M., in Proceedings of the International Thermal Spray Conference, Ohmori, A., Ed. (High-Temperature Society of Japan, 2002), p. 1179.Google Scholar
Baranovski, V., Verstak, A., US Patent 6,245,390 (2001).Google Scholar
Stoltenhoff, T., Kreye, H., Richter, H.J., J. Therm. Spray Technol. 11 (4), 542 (2002).CrossRefGoogle Scholar
Ichikawa, Y., Sakaguchi, K., Ogawa, K., Shoji, T., Barradas, S., Jeandin, M., Boustie, M., in Thermal Spray 2007: Global Coating Solutions, Marple, B.R., Hyland, M.M., Lau, Y.-C., Li, C.-J., Lima, R.S., Montavon, G., Eds. (ASM International, Materials Park, OH, 2007), p. 54.Google Scholar
Smith, M.F., Hall, A.C., Fleetwood, J.D., Meyer, P., Coatings 1, 117 (2011).CrossRefGoogle Scholar
Kablov, E.N., Muboyadzhyan, S.A., Budinovskii, S.A., Lutsenko, A.N., Russ. Metall. 5, 364 (2007).CrossRefGoogle Scholar
Vetter, J., Knotek, O., Brand, J., Beele, W., Surf. Coat. Technol. 6869, 27 (1994); O. Knotek, E. Lugscheider, F. Löffler, W. Beele, C. Barimani, Surf. Coat. Technol. 74–75, 118(1995).CrossRefGoogle Scholar
Zhao, J.-C., Lipkin, D.M., US Patent 6,964,791 (2005).Google Scholar
Balint, D.S., Hutchinson, J.W., Acta Mater. 51, 3965 (2003).CrossRefGoogle Scholar
Balint, D.S., Hutchinson, J.W., J. Mech. Phys. Solids 53, 949 (2005).CrossRefGoogle Scholar
Pan, D., Chen, M.W., Wright, P.K., Hemker, K.J., Acta Mater. 51, 2205 (2003).CrossRefGoogle Scholar
Takeshi, I., Gleeson, B., J. Jpn. Inst. Met. 71, 34 (2007).Google Scholar
Sato, A., Harada, H., Kawagishi, K., Metall. Mater. Trans. A 37, 790 (2006).CrossRefGoogle Scholar
Kawagishi, K., Harada, H., Sato, A., Matsumoto, K., Superalloys 76 (2008).Google Scholar
Tryon, B., Cao, F., Murphy, K.S., Levi, C.G., Pollock, T.M., JOM 58, 53 (2006).CrossRefGoogle Scholar
Tryon, B., Feng, Q., Wellman, R., Murphy, K., Yang, J., Levi, C., Nicholls, J., Pollock, T.M., Metall. Mater. Trans. A 37, 3347 (2006).CrossRefGoogle Scholar
Cao, F., Pollock, T.M., Metall. Mater. Trans. A 39, 39 (2008).CrossRefGoogle Scholar
Hemker, K.J., Mendis, B.G., Eberl, C., Mater. Sci. Eng., A 483484, 727 (2008).CrossRefGoogle Scholar
Chen, M.W., Glynn, M.L., Ott, R.T., Hufnagel, T.C., Hemker, K.J., Acta Mater. 51, 4279 (2003).CrossRefGoogle Scholar
Karlsson, A.M., Hutchinson, J.W., Evans, A.G., Mater. Sci. Eng., A 351, 24 (2003).CrossRefGoogle Scholar
Mumm, D.R., Evans, A.G., Spitsberg, I.T., Acta Mater. 49, 2329 (2001).CrossRefGoogle Scholar
Suzuki, A., Gigliotti, M.F.X., Hazel, B.T., Konitzer, D.G., Pollock, T.M., Metall. Mater. Trans. A 41, 948 (2010).CrossRefGoogle Scholar
Evans, A.G., He, M.Y., Suzuki, A., Gigliotti, M., Hazel, B., Pollock, T.M., Acta Mater. 57, 2969 (2009).CrossRefGoogle Scholar
Zhang, W., Smith, J.R., Wang, X.-G., Evans, A.G., Phys. Rev. B 67 (245414), 1 (2003).Google Scholar
Pint, B.A., Wright, I.G., Lee, W.Y., Zhang, Y., Prüßner, K., Alexander, K.B., Mater. Sci. Eng., A 245, 201 (1998).CrossRefGoogle Scholar
Pint, B., Haynes, J.A., Besmann, T.M., Surf. Coat. Technol. 204, 3287 (2010).CrossRefGoogle Scholar
Smialek, J.L., in Proc. Electrochemical Society: Symposium on High Temperature Corrosion and Materials Chemistry, Hou, P.Y., McNallan, M.J., Oltra, R., Opila, E.J., Shores, D.A., Eds. (Electrochemical Society, Pennington, NJ, 1998), pp. 211220.Google Scholar
Xu, Q., Van der Ven, A., Acta Mater. 59, 1095 (2011).CrossRefGoogle Scholar
Van der Ven, A., Thomas, J.C., Xu, Q., Bhattacharya, J., Math. Comput. Simul. 80 (7), 1393 (2010).CrossRefGoogle Scholar
Xu, Q., Van der Ven, A., Phys. Rev. B 81, 064303 (2010).CrossRefGoogle Scholar
Xu, Q., Van der Ven, A., Intermetallics 17 (5), 319 (2009).Google Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., Nix, W.D., Science 305, 986 (2004).CrossRefGoogle Scholar
Feng, Q., Picard, Y.N., Liu, H., Yalisove, S.M., Mourou, G., Pollock, T.M., Scripta Mater. 53, 511 (2005).CrossRefGoogle Scholar
Ma, S., Tryon, B., McDonald, J.P., Yalisove, S.M., Pollock, T.M., Metall. Mater. Trans. A 38, 2153 (2007).CrossRefGoogle Scholar
Zheng, X., Cahill, D.G., Weaver, R., Zhao, J.-C., J. Appl. Phys. 104, 073509 (2008).CrossRefGoogle Scholar
Zhao, J.-C., Prog. Mater Sci. 51, 557 (2006).CrossRefGoogle Scholar
Margueron, S.H., Clarke, D.R., Acta Mater. 54, 5551 (2006).CrossRefGoogle Scholar
72.Clarke, D.R., Gardiner, D.J., Int. J. Mater. Res. 98, 8 (2007).CrossRefGoogle Scholar
Tolpygo, V.K., Clarke, D.R., Murphy, K.S., Surf. Coat. Technol. 188189, 62 (2004).CrossRefGoogle Scholar
Clarke, D.R., Curr. Opin. Solid State Mater. Sci. 6, 237 (2002).CrossRefGoogle Scholar
Sergo, V., Clarke, D.R., J. Am. Ceram. Soc. 81, 3237 (1998).CrossRefGoogle Scholar
Tolpygo, V.K., Dryden, J.R., Clarke, D.R., Acta Mater. 46, 927 (1998).CrossRefGoogle Scholar
Hou, P.Y., Paullikas, A.P., Veal, B.W., Mater. Sci. Forum 522523, 433 (2006).CrossRefGoogle Scholar
Hovis, D., Hu, L., Reddy, A., Heuer, A.H., Paullikas, A.P., Veal, B.W., Int. J. Mater. Res. 98, 12 (2007).CrossRefGoogle Scholar