Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T22:20:13.489Z Has data issue: false hasContentIssue false

Ion motion and electrochemistry in nanostructures

Published online by Cambridge University Press:  18 November 2011

Douglas Natelson
Affiliation:
Rice University, Houston, TX 77005, USA; natelson@rice.edu
Massimiliano Di Ventra
Affiliation:
University of California San Diego, La Jolla, CA 92093–0319, USA; diventra@physics.ucsd.edu
Get access

Abstract

Ionic motion and electrochemistry in bulk materials and at their surfaces have long been studied for their relevance in several areas of science and technology, ranging from ionic conductors to batteries to fuel cells. The ability to engineer materials at the nanometer scale, however, has made these concepts even more relevant. This is due to the large surface-to-volume ratios typical of nanostructures. This implies, for instance, that chemical reactivity and defect motion at surfaces or interfaces are enhanced or may be fundamentally different compared to their bulk counterparts. In addition, nominally modest voltages or differences in chemical potential when applied across nanoscale distances can produce large electric fields and diffusive forces. While all of this may complicate the interpretation of experimental results, it also presents us with new opportunities for materials engineering. In this article, we will briefly review the current research status of several systems where ionic motion and electrochemical effects are of particular importance. These include resistive switching systems, oxide heterostructures, ferroelectric materials, and ionic liquids. We will report on experimental results and also emphasize open questions regarding their interpretation. We will conclude by discussing future research directions in the field.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kim, S., Yamaguchi, S., Elliot, J.A., MRS Bull. 34, 900 (2009).CrossRefGoogle Scholar
2.Huggins, R.A., Advanced Batteries: Materials Science Aspects (Springer, NY, 2008).Google Scholar
3.Zhang, Z., Ramadass, P., in Lithium-Ion Batteries: Science and Technologies, Yoshio, M., Brodd, R.J., Kozawa, A., Eds. (Springer, NY, 2009), C. 20.Google Scholar
4.Goodenough, J.B., Abruna, H.D., Buchanan, M.V., “Basic Research Needs for Electrical Energy Storage: Report of the Basic Energy Sciences workshop on Electrical Energy Storage” (U.S. Department of Energy, Basic Energy Sciences, 2007).CrossRefGoogle Scholar
5.Goodenough, J.B., Kim, Y., Chem. Mater. 22, 587 (2010).CrossRefGoogle Scholar
6.Minh, N.Q., J. Am. Ceram. Soc. 76, 563 (1993).CrossRefGoogle Scholar
7.Steele, B.C.H., Heinzel, A., Nature 414, 345 (2001).CrossRefGoogle Scholar
8.Maier, J., Nat. Mater. 4, 805 (2005).CrossRefGoogle Scholar
9.Di Ventra, M., Electrical Transport in Nanoscale Systems (Cambridge University Press, UK, 2008).CrossRefGoogle Scholar
10.Mehrer, H., Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Springer, NY, 2007).CrossRefGoogle Scholar
11.Kittel, C., Introduction to Solid State Physics, 8th Edition (Wiley, NY, 2004).Google Scholar
12.Elliott, S.R., Physics of Amorphous Materials (Longman Scientific and Technical, England, 1990), 2nd ed.Google Scholar
13.Armand, M.B., Bruce, P.G., Forsyth, M., Scrosati, B., Wieczorek, W., Polymer Electrolytes (Wiley, NY, 2011), pp. 131.Google Scholar
14.Johnson, O.W., Paek, S., DeFord, J.W., J. Appl. Phys. 46, 1026 (1975).CrossRefGoogle Scholar
15.Bates, J.B., Wang, J.C., Perkins, R.A., Phys. Rev. B 19, 4130 (1979).CrossRefGoogle Scholar
16.Cen, C., Thiel, S., Mannhart, J., Levy, J., Science 323, 1026 (2009).CrossRefGoogle Scholar
17.Ueno, K., Nakamura, S., Shimotani, H., Ohtomo, A., Kimura, N., Nojima, T., Aoki, H., Iwasa, Y., Kawasaki, M., Nat. Mater. 7, 855 (2008).CrossRefGoogle Scholar
18.Waser, R., Aono, M., Nat. Mat. 6, 833 (2007).CrossRefGoogle Scholar
19.Pershin, Y.V., Di Ventra, M., Adv. Phys. 60, 145 (2011).CrossRefGoogle Scholar
20.Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S., Nature 453, 80 (2008).CrossRefGoogle Scholar
21.Chua, L.O., Kang, S.M., Proc. IEEE 64, 209 (1976).CrossRefGoogle Scholar
22.Di Ventra, M., Pershin, Y.V., Chua, L.O., Proc. IEEE 97, 1717 (2009).CrossRefGoogle Scholar
23.Terabe, K., Hasegawa, T., Nakayama, T., Aono, M., Nature 433, 47 (2005).CrossRefGoogle Scholar
24.Sawa, A., Mater. Today 11, 28 (2008).CrossRefGoogle Scholar
25.Korotkov, A.L., Bowman, M., McGuinness, H.J., Davidovic, D., Nanotechnology 14, 42 (2003).CrossRefGoogle Scholar
26.Wu, J., McCreery, R.L., J. Electrochem. Soc. 156, P29 (2009).CrossRefGoogle Scholar
27.Jeong, D.S., Schroeder, H., Waser, R., Phys. Rev. B 79, 195317 (2009).CrossRefGoogle Scholar
28.Yao, J., Zhong, L., Zhang, Z., He, T., Jin, Z., Wheeler, P.J., Natelson, D., Tour, J.M., Small 5, 2910 (2009).CrossRefGoogle Scholar
29.Tour, J.M., Cheng, L., Nackashi, D.P., Yao, Y., Flatt, A.K., St. Angelo, S.K., Mallouk, T.E., Franzon, P.D., J. Amer. Chem. Soc. 125, 13279 (2003).CrossRefGoogle Scholar
30.Yao, J., Sun, Z., Zhong, L., Natelson, D., Tour, J.M., Nano Lett. 10, 4105 (2010).CrossRefGoogle Scholar
31.Yao, J., Zhong, L., Natelson, D., Tour, J.M., J. Amer. Chem. Soc. 133, 941 (2011).CrossRefGoogle Scholar
32.Cava, R.J., Batlogg, B., Chen, C.H., Rietman, E.A., Zahurak, S.M., Werder, D., Nature 329, 423 (1987).CrossRefGoogle Scholar
33.Schneider, C.W., Esposito, M., Marozau, I., Conder, K., Doebeli, M., Hu, Y., Mallepell, M., Wokaun, A., Lippert, T., Appl. Phys. Lett. 97, 192107 (2010).CrossRefGoogle Scholar
34.Reyren, N., Thiel, S., Caviglia, A.D., Kourkoutis, L.F., Hammerl, G., Richter, C., Schneider, C.W., Kopp, T., Ruetschi, A.-S., Jaccard, D., Gabay, M., Muller, D.A., Triscone, J.-M., Mannhart, J., Science 317, 1196 (2007).CrossRefGoogle Scholar
35.Bristowe, N.C., Littlewood, P.B., Artacho, E., Phys. Rev. B 83, 205405 (2011).CrossRefGoogle Scholar
36.Xie, Y., Bell, C., Yajima, T., Hikita, Y., Hwang, H.Y., Nano Lett. 10, 2588 (2010).CrossRefGoogle Scholar
37.Bi, F., Bogorin, D.F., Cen, C., Bark, C.W., Park, J.-W., Eom, C.-B., Levy, J., Appl. Phys. Lett. 97, 173110 (2010).CrossRefGoogle Scholar
38.Weisbuch, C., Vinter, B., Quantum Semiconductor Structures: Fundamentals and Applications (Academic Press, MO, 1991).CrossRefGoogle Scholar
39.Yuan, H., Shimotani, H., Tsukazaki, A., Ohtomo, A., Kawasaki, M., Iwasa, Y., J. Amer. Chem. Soc. 132, 6672 (2010).CrossRefGoogle Scholar
40.Ohta, H., Sato, Y., Kato, T., Kim, S.W., Nomura, K., Ikuhara, Y., Hosono, H., Nat. Commun. 1, 118 (2011).CrossRefGoogle Scholar
41.Ye, J.T., Inoue, S., Kobayashi, K., Kasahara, Y., Yuan, H.T., Shimotani, H., Iwasa, Y., Nat. Mater. 9, 125 (2010).CrossRefGoogle Scholar
42.Bollinger, A.T., Dubuis, G., Yoon, J., Pavuna, D., Misewich, J., Bozovic, I., Nature 472 (2011).CrossRefGoogle Scholar
43.Leng, X., Garcia-Barriocanal, J., Bose, S., Lee, Y., Goldman, A.M., Phys. Rev. Lett. 107, 027001 (2011).CrossRefGoogle Scholar
44.Scott, J.F., Paz de Araujo, C.A., Science 246, 1400 (1989).CrossRefGoogle Scholar
45.Tsymbal, E.Y., Kohlstedt, H., Science 313, 181 (2006).CrossRefGoogle Scholar
46.Garcia, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N.D., Barthelemy, A., Bibes, M., Nature 460, 81 (2011).CrossRefGoogle Scholar
47.Kalinin, S.V., Jesse, S., Tselev, A., Baddorf, A.P., Balke, N., ACS Nano 5, 5683 (2011).CrossRefGoogle Scholar
48.Bristowe, N.C., Stengel, M., Littlewood, P.B., Pruneda, J.M., Artacho, E., arxiv:1108.2208 (2011).Google Scholar
49.Stephenson, G.B., Highland, M.J., arxiv:1101.0298 (2011).CrossRefGoogle Scholar
50.Nonnenmann, S.S., Gallo, E.M., Spanier, J.E., Appl. Phys. Lett. 97, 102904 (2010).CrossRefGoogle Scholar
51.Wehling, T.O., Novoselov, K.S., Morozov, S.V., Vdovin, E.E., Katsnelson, M.I., Geim, A.K., Lichtenstein, A.I., Nano Lett. 8, 173 (2008).CrossRefGoogle Scholar
52.Hong, X., Hoffman, J., Posadas, A., Zou, K., Ahn, C.H., Zhu, J., Appl. Phys. Lett. 97, 033114 (2010).CrossRefGoogle Scholar
53.Xie, Y., Hikita, Y., Bell, C., Hwang, H.Y., 2011, in press (available athttp://arxiv.org/abs/1105.3891).Google Scholar
54.Chen, X., Liu, L., Yu, P.Y., Mao, S.S., Science 331, 746 (2011).CrossRefGoogle Scholar
55.Wang, G., Wang, H., Ling, Y., Tang, Y., Yang, X., Fitzmorris, R.C., Wang, C., Zhang, J.Z., Li, Y., Nano Lett. 11, 3026 (2011).CrossRefGoogle Scholar
56.Bruce, P.G., Scrosati, B., Tarascon, J.-M., Angew. Chem. Int. Ed. 47, 2930 (2008).CrossRefGoogle Scholar
57.Armand, M., Tarascon, J.-M., Nature 451, 652 (2008).CrossRefGoogle Scholar
58.Liu, X.H., Zhang, L.Q., Zhong, L., Liu, Y., Zheng, H., Wang, J.W., Cho, J.-H., Dayeh, S.A., Picraux, S.T., Sullivan, J.P., Mao, S.X., Ye, Z.Z., Huang, J.Y., Nano Lett. 11, 2251 (2011).CrossRefGoogle Scholar
59.Liu, X.H., Zheng, H., Zhong, L., Huang, S., Karki, K., Zhang, L.Q., Liu, Y., Kushima, A., Liang, W.T., Wang, J.W., Cho, J.-H., Epstein, E., Dayeh, S.A., Picraux, S.T., Zhu, T., Li, J., Sullivan, J.P., Cumings, J., Wang, C., Mao, S.X., Ye, Z.Z., Zhang, S., Huang, J.Y., Nano Lett. 11, 3312 (2011).CrossRefGoogle Scholar
60.Zwolak, M., Di Ventra, M., Rev. Mod. Phys. 80, 141 (2008).CrossRefGoogle Scholar
61.Alam, M.A., Weir, B., Bude, J., Silverman, P., Monroe, D., “Explanation of soft and hard breakdown and its consequences for area scaling,” IEDM Technical Digest 1999, 449452 (2000).Google Scholar