Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T07:48:02.808Z Has data issue: false hasContentIssue false

Hole-transport material-free perovskite-based solar cells

Published online by Cambridge University Press:  07 August 2015

Lioz Etgar*
Affiliation:
The Institute of Chemistry, The Hebrew University of Jerusalem, Israel; lioz.etgar@mail.huji.ac.il
Get access

Abstract

Recent discoveries have revealed a breakthrough in the photovoltaics (PVs) field using organometallic perovskites as light harvesters in the solar cell. The organometal perovskite arrangement is self-assembled as alternate layers via a simple low-cost procedure. These organometal perovskites promise several benefits not provided by the separate constituents. This overview concentrates on implementing perovskites in PV cells such that the perovskite layers are used as the light harvester as well as the hole-conducting component. Eliminating hole-transport material (HTM) in this solar-cell structure avoids oxidation, reduces costs, and provides better stability and consistent results. Aspects of HTM-free perovskite solar cells discussed in this article include (1) depletion regions, (2) high voltages, (3) panchromatic responses, (4) chemical modifications, and (5) contacts in HTM-free perovskite solar cells. Elimination of HTM could expand possibilities to explore new interfaces in these solar cells, while over the long term, these uniquely structured HTM-free solar cells could offer valuable benefits for future PV and optoelectronics applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kojima, A., Ikegami, M., Teshima, K., Miyasaka, T., Chem. Lett. 41, 397 (2012).Google Scholar
Kagan, C.R., Mitzi, D.B., Dimitrakopoulos, C.D., Science 286, 945 (1999).Google Scholar
Mitzi, D.B., Field, C.A., Schlesinger, Z., Laibowitz, R.B., J. Solid State Chem. 114, 159 (1995).Google Scholar
Lee, M., Teuscher, M.J., Miyasaka, T., Murakami, T.N., Snaith, H.J., Science 338, 643 (2012).CrossRefGoogle Scholar
Ball, J.M., Lee, M.M., Hey, A., Snaith, H.J., Energy Environ. Sci. 6, 1739 (2013).Google Scholar
Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H.-J., Sarkar, A., Nazeeruddin, M.K., Grätzel, M., Seok, S.I., Nat. Photonics 7, 486 (2013).Google Scholar
Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., Huang, J., Energy Environ. Sci. 7, 2619 (2014).Google Scholar
Abate, A., Saliba, M., Hollman, D.J., Stranks, S.D., Wojciechowski, K., Avolio, R., Grancini, G., Petrozza, A., Snaith, H.J., Nano Lett. 14 (6), 3247 (2014).CrossRefGoogle Scholar
Bi, D., Moon, S.J., Haggman, L., Boschloo, G., Yang, L., Johansson, E.M.J., Nazeeruddin, M.K., Graetzel, M., RSC Adv. 3, 18762 (2013).Google Scholar
Epron, G.E., Burlakov, V.M., Goriely, A., Snaith, H.J., ACS Nano 8 (1), 591 (2014).Google Scholar
Epron, G.E., Burlakov, V.M., Docampo, P., Goriely, A., Snaith, H.J., Adv. Funct. Mater. 24, 151 (2014).Google Scholar
Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I., Nano Lett. 13, 1764 (2013).Google Scholar
Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, M.K., Graetzel, M., J. Am. Chem. Soc. 134, 17396 (2012).Google Scholar
Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H., Yang, S., Nanoscale 5, 3245 (2013).Google Scholar
Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M., Nature 499, 316 (2013).Google Scholar
Liu, M., Johnston, M.B., Snaith, H.J., Nature 501, 395 (2013).Google Scholar
Zuo, C., Ding, L., Nanoscale 6, 9935 (2014).Google Scholar
Chen, H., Pan, X., Liu, W., Cai, M., Kou, D., Huo, Z., Fang, X., Dai, S., Chem. Commun. 49, 7277 (2013).Google Scholar
National Renewable Energy Laboratory, Best Research-Cell Efficiencies; http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.Google Scholar
Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J., Science 342, 341 (2013).Google Scholar
Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., Sum, T.C., Science 342, 344 (2013).Google Scholar
Laben, W.A., Etgar, L., Energy Environ. Sci. 6, 3249 (2013).Google Scholar
Aharon, S., Cohen, B.E., Etgar, L., J. Phys. Chem. C 118, 17160 (2014).CrossRefGoogle Scholar
Cohen, B.E., Gamliel, S., Etgar, L., APL Mater. 2, 081502 (2014).Google Scholar
Shi, J., Dong, J., Lv, S., Xu, Y., Zhu, L., Xiao, J., Xu, X., Wu, H., Li, D, Meng, Q., Appl. Phys. Lett. 104, 063901 (2014).Google Scholar
Aharon, S., Gamliel, S., Cohen, B.E., Etgar, L., Phys. Chem. Chem. Phys. 16, 10512 (2014).Google Scholar
Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., Han, H., Science 345 (6194), 295 (2014).Google Scholar
Edri, E., Kirmayer, S., Cahen, D., Hodes, G., J. Phys. Chem. Lett. 4, 897 (2013).Google Scholar
Edri, E., Kirmayer, S., Kulbak, M., Hodes, G., Cahen, D., J. Phys. Chem. Lett. 5, 429 (2014).Google Scholar
Ryu, S., Noh, J.H., Jeon, N.J., Kim, Y.C., Yang, W.S., Seo, J., Seok, S.I., Energy Environ. Sci. 7, 2614 (2014).Google Scholar
Dymshits, A., Rotem, A., Etgar, L., J. Mater. Chem. A 2, 20776 (2014).Google Scholar
Etgar, L., Gao, P., Qin, P., Graetzel, M., Nazeeruddin, M.K., J. Mater. Chem. A 2, 11586 (2014).Google Scholar
Lv, S., Pang, S., Zhou, Y., Padture, N.P., Hu, H., Wang, L., Zhou, X., Zhu, H., Zhang, L., Cui, G., Phys. Chem. Chem. Phys. 16, 19206 (2014).Google Scholar
Aharon, S., Dymshits, A., Rotem, A., Etgar, L., J. Mater. Chem. A 3, 9171 (2015).Google Scholar
Zhang, F., Yang, X., Wang, H., Cheng, M., Zhao, J., Sun, L., ACS Appl. Mater. Interfaces 6, 16140 (2014).Google Scholar
Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., Du, Y., Ma, T., J. Phys. Chem. Lett. 5, 3241 (2014).Google Scholar
Hu, M., Liu, L., Mei, A., Yang, Y., Liu, T., Han, H., J. Mater. Chem. A 2, 17115 (2014).Google Scholar
Hao, F., Stoumpos, C.C., Liu, Z., Chang, R.P.H., Kanatzidis, M.G., J. Am. Chem. Soc. 136, 16411 (2014).Google Scholar