Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T07:47:44.677Z Has data issue: false hasContentIssue false

Epitaxial graphene: A new electronic material for the 21st century

Published online by Cambridge University Press:  16 August 2011

Walt A. de Heer*
Affiliation:
Georgia Institute of Technology, Atlanta, GA 30332, USA; deheer@physics.gatech.edu
Get access

Abstract

Graphene has been known for a long time, but only recently has its potential for electronics been recognized. Its history is recalled starting from early graphene studies. A critical insight in June 2001 brought to light that graphene could be used for electronics. This was followed by a series of proposals and measurements cumulating in a comprehensive patent for graphene-based electronics filed in 2003. The Georgia Institute of Technology (GIT) graphene electronics research project group selected epitaxial graphene as the most viable route for graphene-based electronics, as described in their 2004 paper on transport and structural measurements of epitaxial graphene. Subsequently, the field developed rapidly, and multilayer graphene was discovered at GIT. This material consists of many graphene layers, but it is not graphite; in contrast to graphite, the layers are rotated with respect to each other, causing electronic decoupling so that each layer has the electronic structure of graphene. Currently, the field has developed to the point where epitaxial graphene-based electronics may be realized in the not too distant future.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Acheson, E., J. Franklin Inst. 164, 0375 (1907); Chemical & metallurgical engineering 5, 452 (1907), edited by Eugene Franz Roeber, Howard Coon Parmelee.CrossRefGoogle Scholar
2.Dunwoody, H.C., “Wireless telegraph system,” U.S. Patent 837, 616 (1906).Google Scholar
3.Round, H.J., Electrical World 19, 309 (1907).Google Scholar
4.Lely, J.A., Berichte der Deutschen Keramischen Gesellschaft 32, 229 (1955).Google Scholar
5.Brodie, B.C., Proceedings of the Royal Society of London 10, 249 (1859).Google Scholar
6.Boehm, H., Clauss, A., Hofmann, U., Fischer, G., Z. Naturforsch., B: Chem. Sci. 17, 150 (1962).CrossRefGoogle Scholar
7.Boehm, H., Setton, R., Stumpp, E., Carbon 24, 241 (1986).CrossRefGoogle Scholar
8.van Bommel, A.J., Crombeen, J.E., van Tooren, A., Surf. Sci. 48, 463 (1975).CrossRefGoogle Scholar
9.Forbeaux, I., Themlin, J.M., Debever, J.M., Phys. Rev. B: Condens. Matter 58, 16396 (1998).CrossRefGoogle Scholar
10.Gall, N.R., RutKov, E.V., Tontegode, A.Y., Int. J. Mod. Phys. B 11, 1865 (1997).CrossRefGoogle Scholar
11.Lu, X., Yu, M., Huang, H., Ruoff, R., Nanotechnology 10, 269 (1999).CrossRefGoogle Scholar
12.Wallace, P.R., Phys. Rev. 71, 622 (1947).CrossRefGoogle Scholar
13.McClure, J.W., Phys. Rev. 119, 606 (1960).CrossRefGoogle Scholar
14.Ando, T., Nakanishi, T., Saito, R., J. Phys. Soc. Jpn. 67, 2857 (1998).CrossRefGoogle Scholar
15.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
16.Mintmire, J., Dunlap, B., White, C., Phys. Rev. Lett. 68, 631 (1992).CrossRefGoogle Scholar
17.Frank, S., Poncharal, P., Wang, Z.L., Heer, W.A., Science 280, 1744 (1998).CrossRefGoogle Scholar
18.White, C., Todorov, T., Nature 393, 240 (1998).CrossRefGoogle Scholar
19.Tans, S., Verschueren, R., Dekker, C., Nature 393, 49 (1998).CrossRefGoogle Scholar
20.Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S., Phys. Rev. B: Condens. Matter 54, 17954 (1996).CrossRefGoogle Scholar
21.de Heer, W., Early Development of Graphene Electronics (2009); http://hdl.handle.net/1853/31270.Google Scholar
22.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, F. IV, Science 306, 666 (2004).CrossRefGoogle Scholar
23.Berger, C., Song, Z., Li, T., Li, X., Ogbazghi, A.Y., Feng, R., Dai, Z., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., Journal of Physical Chemistry B 108, 19912 (2004).CrossRefGoogle Scholar
24.Berger, C., Song, Z., Li, T., First, P., Bellisard, J., deHeer, W.A., Bull. Amer. Phys. Soc. (2004); http://flux.aps.org/meetings/YR04/MAR04/baps/abs/S170008.html.Google Scholar
25.de Heer, W., Berger, C., Wu, X., First, P., Conrad, E., Li, X., Li, T., Sprinkle, M., Hass, J., Sadowski, M., Potemski, M., Martinez, G., Solid State Comm. 143, 92 (2007).CrossRefGoogle Scholar
26.Wu, X., Hu, Y., Ruan, M., Madiomanana, N., Hankinson, J., Sprinkle, M., Berger, C., de Heer, W.A., Appl. Phys. Lett. 95, 223108 (2009).CrossRefGoogle Scholar
27.Berger, C., Song, Z., Li, X., Wu, X., Brown, N., Naud, C., Mayou, D., Li, T., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A., Science 312, 1191 (2006).CrossRefGoogle Scholar
28.Sadowski, M.L., Martinez, G., Potemski, M., Berger, C., de Heer, W.A., Phys. Rev. Lett. 97, 266405 (2006).CrossRefGoogle Scholar
29.Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D.K., Barra, A., Sprinkle, M., Berger, C., de Heer, W.A., Potemski, M., Phys. Rev. Lett. 101, 267601 (2008).CrossRefGoogle Scholar
30.Hass, J., Varchon, F., Millan-Otoya, J.E., Sprinkle, M., Sharma, N., de Heer, W.A., Berger, C., First, P.N., Magaud, L., Conrad, E.H., Phys. Rev. Lett. 100, 125504 (2008).CrossRefGoogle Scholar
31.Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Soukiassian, P., Tejeda, A., Taleb-Ibrahimi, A., Fa¨vre, P.L., Bertran, F., Berger, C., de Heer, W.A., Lanzara, A., Conrad, E.H., Phys. Rev. Lett. 103, 4 (2009).CrossRefGoogle Scholar
32.Miller, D.L., Kubista, K.D., Rutter, G.M., Ruan, M., de Heer, W.A., First, P.N., Stroscio, J.A., Science 324, 924 (2009).CrossRefGoogle ScholarPubMed
33.Sun, D., Wu, Z., Divin, C., Li, X., Berger, C., de Heer, W.A., First, P.N., Norris, T.B., Phys. Rev. Lett. 101, 157402 (2008).CrossRefGoogle Scholar
34.Wu, X., Sprinkle, M., Li, X., Ming, F., Berger, C., de Heer, W.A., Phys. Rev. Lett. 101, 026801 (2008).CrossRefGoogle Scholar
35.Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W.A., Haddon, R.C., J. Am. Chem. Soc. 131, 1336 (2009).CrossRefGoogle Scholar
36.Sprinkle, M., Ruan, M., Hu, Y., Hankinson, J., Rubio-Roy, M., Zhang, B., Wu, X., Berger, C., de Heer, W.A., Nat. Nanotechnol. 5, 727 (2010).CrossRefGoogle Scholar
37.Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Röhrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, Th., Nat. Mater. 8, 203 (2009).CrossRefGoogle Scholar
38.Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A., Avouris, P., Science 327, 662 (2010).CrossRefGoogle Scholar
39.Kedzierski, J., Hsu, P.L., Healey, P., Wyatt, P.W., Keast, C.L., Sprinkle, M., Berger, C., de Heer, W.A., IEEE Trans. Electron Devices 55, 2078 (2008).CrossRefGoogle Scholar
40.Tzalenchuk, A., Lara-Avila, S., Kalaboukhov, A., Paolillo, S., Syvajarvi, M., Yakimova, R., Kazakova, O., Janssen, T.J.B.M., Fal’ko, V., Kubatkin, S.Nano Lett. 10, 1559 (2010).Google Scholar