Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:21:25.575Z Has data issue: false hasContentIssue false

Catalyzed Complex Metal Hydrides

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

Complex hydrides are mixed ionic–covalent compounds that can serve as reversible H2 storage media only when they are catalyzed by a transition metal such as Ti. As the prime example, the phenomenology of Ti-catalyzed sodium alanate (NaAlH4) is reviewed from a historical perspective. Dehydriding yields a theoretical 5.6 wt% H2 during two-step decomposition, NaAlH4 → Na3AlH6 → NaH + Al, although 100% recovery of that H2 is not currently possible. H2 can be discharged and recharged at practical rates at 125°C. More work is needed on the alanates, in particular, as well as the identification and optimization of the catalytic mechanism and a broad extension of the concept to other than Na-based alanates. The possibility of an even further extension of the concept to other complex hydrides (e.g., the borohydrides and transition-metal complexes) is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bogdanović, B. and Schwickardi, M.J., J. Alloys Compd. 253 (1997) p. 1.Google Scholar
2.Bogdanović, B., Brand, R.A., Marjanović, A., Schwickardi, M., and Tölle, J., J. Alloys Compd. 302 (2000) p. 36.CrossRefGoogle Scholar
3.Millennium Cell Inc. Home Page, http://www.millenniumcell.com (accessed July 2002);Google Scholar
H-GeneTech Alliance, http://alliance.hydrogen.co.jp (accessed July 2002).Google Scholar
4.Dymova, T.N., Eliseeva, N.G., Bakum, S.I., and Dergachev, Yu.M., Dokl. Akad. Nauk SSSR 215 (1974) p. 1369, Engl. p. 256.Google Scholar
5.Dymova, T.N., Dergachev, Yu.M., Sokolov, V.A., and Grechanaya, N.A., Dokl. Akad. Nauk SSSR 224 (1975) p. 591, Engl. p. 556.Google Scholar
6.Jensen, C.M., Zidan, R.A., Mariels, N., Hee, A.G., and Hagen, C., Int. J. Hydrogen Energy 24 (1999) p. 461.Google Scholar
7.Zidan, R.A., Takara, S., Hee, A.G., and Jensen, C.M., J. Alloys Compd. 285 (1999) p. 119.CrossRefGoogle Scholar
8.Zaluska, A., Zaluski, L., and Ström-Olsen, J.O., J. Alloys Compd. 298 (2000) p. 125.Google Scholar
9.Sandrock, G., Gross, K., Thomas, G., Jensen, C., Meeker, D., and Takara, S., J. Alloys Compd. 330–332 (2002) p. 696.Google Scholar
10.Jensen, C.M. and Gross, K.J., Appl. Phys. A 72 (2001) p. 213.CrossRefGoogle Scholar
11.Gross, K.J., Thomas, G.J., and Jensen, C.M., J. Alloys Compd. 330–332 (2002) p. 683.CrossRefGoogle Scholar
12.Sandrock, G., Gross, K., and Thomas, G., J. Alloys Compd. 339 (2002) p. 299.Google Scholar
13.Gross, K.J., Sandrock, G., and Thomas, G., J. Alloys Compd. 330–332 (2002) p. 691.Google Scholar
14.Thomas, G.J., Gross, K.J., and Yang, N., J. Alloys Compd. 330–332 (2002) p. 702.Google Scholar
15.Sun, D., Kiyobayashi, T., Takeshita, H.T., Kuriyama, N., and Jensen, C.M., J. Alloys Compd. 337 (2002) p. L8.CrossRefGoogle Scholar
16.Balema, V.P., Dennis, K.W., and Pecharsky, V.K., Chem. Commun. (2000) p. 1665.Google Scholar
17.Sullivan, E.A., in Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 13 (John Wiley & Sons, New York, 1995) p. 606.Google Scholar
18.Bogdanović, B. and Schwickardi, M.J., Appl. Phys. A 72 (2001) p. 221.Google Scholar
19.Zaluska, A., Zaluski, L., and Ström-Olsen, J.O., Appl. Phys. A 72 (2001) p. 157.Google Scholar
20.Gross, K.J., Thomas, G.J., Majzoub, E., and Sandrock, G., in Proc. 2001 DOE Hydrogen Program Review, NREL/CP-570–30535 (National Renewable Energy Laboratory, Golden, CO, 2001), available from http://www.eren.doe.gov/hydrogen/docs/30535toc.html (accessed July 2002).Google Scholar
21.Yvon, K., Chimia 52 (1998) p. 613.CrossRefGoogle Scholar
22.Bronger, W., J. Alloys Compd. 225 (1995) p. 1.Google Scholar
23.Olofsson-Mårtensson, M., Häussermann, U., Tomkinson, J., and Noréus, D., J. Am. Chem. Soc. 122 (2000) p. 6960.CrossRefGoogle Scholar
24.Reiser, A., Bogdanović, B., and Schlichte, K., Int. J. Hydrogen Energy 25 (2000) p. 425.Google Scholar