Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T16:04:09.583Z Has data issue: false hasContentIssue false

Biomimetic Mineralization/Synthesis of Mesoscale Order in Hybrid Inorganic–Organic Materials via Nanoparticle Self-Assembly

Published online by Cambridge University Press:  31 January 2011

Get access

Abstract

The organization of nanostructures across several length scales by self-assembly is a key challenge in the design of advanced materials. In meeting this challenge, materials scientists can learn much from biomineralization processes in nature. These processes result in hybrid inorganic–organic materials with exquisite and optimized properties, complex forms, and hierarchical order over extended length scales.

Biominerals are usually produced in the presence of an insoluble organic template as well as soluble molecules, which control inorganic crystallization, growth, and selfassembly. These processes can be mimicked successfully, resulting in inorganic–organic hybrid materials with complex form and mesoscale order via a nanoparticle selfassembly process.Various strategies can be applied, including the balancing of aggregation and crystallization, transforming and reorganizing of pre-formed nanoparticle building blocks, and face-selective coding of nanoparticle surfaces by additives for controlled self-assembly. The underlying principles of biomimetic mineralization will be described, along with selected examples showing that while much has already been achieved, the perfection of natural systems is still out of reach.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lowenstam, H.A. and Weiner, S., On Biomineralization (Oxford University Press, New York, 1989).CrossRefGoogle Scholar
2.Mann, S., Webb, J., and Williams, R.J.P., Biomineralization (VCH, Weinheim, 1989).Google Scholar
3.Mann, S., Biomineralization, Principles and Concepts in Bioinorganic Materials Chemistry (Oxford University Press, Oxford, 2001).Google Scholar
4.Bäuerlein, E., Biomineralization (Wiley-VCH, Weinheim, 2000).Google Scholar
5.Mann, S. and Ozin, G.A., Nature 382 (1996) p. 313.CrossRefGoogle Scholar
6.Mann, S., Angew. Chem. Int. Ed. 39 (2000) p. 3392.3.0.CO;2-M>CrossRefGoogle Scholar
7.Ozin, G.A., Chem. Commun. (2000) p. 419.Google Scholar
8.Cölfen, H. and Mann, S., Angew. Chem. Int. Ed. 42 (2003) p. 2350.CrossRefGoogle Scholar
9.Mann, S., ed., Biomimetic Materials Chemistry (VCH, New York, 1996).Google Scholar
10.Cölfen, H., Curr. Opin. Colloid Interface Sci. 8 (2003) p. 23.Google Scholar
11.Meldrum, F.C., Int. Mater. Rev. 48 (2003) p. 187.Google Scholar
12.Weiner, S.W. and Addadi, L., J. Mater. Chem. 7 (1997) p. 689.CrossRefGoogle Scholar
13.Dabbs, D.M. and Aksay, I.A., Annu. Rev. Phys. Chem. 51 (2000) p. 601.Google Scholar
14.Mann, S., J. Chem. Soc., Dalton Trans. (1997) p. 3953.Google Scholar
15.van Bommel, K.J.C., Friggeri, A., and Shinkai, S., Angew. Chem. Int. Ed. 42 (2003) p. 980.Google Scholar
16.Niemeyer, C.M., Angew. Chem. Int. Ed. 40 (2001) p. 4128.Google Scholar
17.Hartgerink, J.D., Zubarev, E.R., and Stupp, S.I., Curr. Opin. Colloid Interface Sci. 5 (2001) p. 355.Google Scholar
18.Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., and Morse, D.E., Nature 381 (1996) p. 56.Google Scholar
19.Penn, R.L. and Banfield, J.F., Geochim. Cosmochim. Acta 63 (1999) p. 1549.Google Scholar
20.Yang, H.G. and Zeng, H.C., Angew. Chem. Int. Ed. 43 (2004) p. 5930.CrossRefGoogle Scholar
21.Li, M., Schnablegger, H., and Mann, S., Nature 402 (1999) p. 393.CrossRefGoogle Scholar
22.Wang, T.X., Cölfen, H., and Antonietti, M., J. Amer. Chem. Soc. 127 (2005) p. 3246.CrossRefGoogle Scholar
23.Wohlrab, S., Pinna, N., Antonietti, M., and Cölfen, H., Chem. Eur. J. 30 (2005) p. 2903.Google Scholar
24.Cölfen, H. and Antonietti, M., Angew. Chem. Int. Ed. 44 (2005) p. 5576.Google Scholar
25.Sarikaya, M., Proc. Natl. Acad. Sci. USA 96 (1999) p. 14183.CrossRefGoogle Scholar
26.Bazylinski, D.A. and Moskowitz, B.M., Rev. Mineral. 35 (1997) p. 181.Google Scholar
27.Mann, S., Sparks, N.H.C., Frankel, R.B., Bazylinskida, D.A., and Jannasch, H.W., Nature 343 (1990) p. 258.CrossRefGoogle Scholar
28.Falini, G., Albeck, S., Weiner, S., and Addadi, L., Science 271 (1996) p. 67.Google Scholar
29.Belcher, A.M., Wu, X.H., Christensen, R.J., Hansma, P.K., Stucky, G.D., and Morse, D.E., Nature 381 (1996) p. 56.Google Scholar
30.Li, C.N. and Kaplan, D.L., Curr. Opin. Solid State Mater. Sci. 7 (2003) p. 265.Google Scholar
31.Göltner, C., Henke, S., Weissenberger, M.C., and Antonietti, M., Angew. Chem. Int. Ed. 37 (1998) p. 613.3.0.CO;2-G>CrossRefGoogle Scholar
32.Heywood, B.R. and Mann, S., Adv. Mater. 6 (1994) p. 9.Google Scholar
33.Hartgerink, J.D., Beniash, E., and Stupp, S.I., Science 294 (2001) p. 1684.Google Scholar
34.Cha, J.N., Stucky, G.D., Morse, D.E., Deming, T.J., Nature 403 (2000) p. 289.CrossRefGoogle Scholar
35.Klaus, T., Joerger, R., Olsson, E., and Granqvist, C.G., Proc. Natl. Acad. Sci. USA 96 (1999) p. 13611.Google Scholar
36.Knez, M., Bittner, A.M., Boes, F., Wege, C., Jeske, H., Mai, E., and Kern, K., Nano Lett. 3 (2003) p. 1079.CrossRefGoogle Scholar
37.Mirkin, C.A., Letsinger, R.L., Mucic, R.C., and Storhoff, J.J., Nature 382 (1996) p. 607.Google Scholar
38.Shenton, W., Douglas, T., Young, M., Stubbs, G., and Mann, S., Adv. Mater. 11 (1999) p. 253.3.0.CO;2-7>CrossRefGoogle Scholar
39.Mao, C., Flynn, C.E., Hayhurst, A., Sweeney, R., Qi, J., Georgiou, G., Iverson, B., and Belcher, A.M., Proc. Natl. Acad. Sci. USA 100 (2003) p. 6946.CrossRefGoogle Scholar
40.Davis, S.A., Burkett, S.L., Mendelson, N.H., Nature 385 (1997) p. 420.Google Scholar
41.Breulmann, M., Cölfen, H., Hentze, H.P., Antonietti, M., Walsh, D., and Mann, S., Adv. Mater. 30 (1998) p. 237.3.0.CO;2-6>CrossRefGoogle Scholar
42.Caruso, R.A., Giersig, M., Willig, F., and Antonietti, M., Langmuir 14 (1998) p. 2670.Google Scholar
43.Velev, O.D., Tessier, P.M., Lenhoff, A.M., and Kaler, E.W., Nature 401 (1999) p. 548.CrossRefGoogle Scholar
44.Subramanian, G., Manoharan, V.N., Thorne, J.D., and Pine, D.J., Adv. Mater. 11 (1999) p. 1261.Google Scholar
45.Rhodes, K.H., Davis, S.A., Caruso, F., Zhang, B., and Mann, S., Chem. Mater. 12 (2000) p. 2832.Google Scholar
46.Busch, S., Dolhaine, H., DuChesne, A., Heinz, S., Hochrein, O., Laeri, F., Podebrad, O., Vietze, U., Weiland, T., and Kniep, R., Eur. J. Inorg. Chem. 30 (1999) p. 1643.Google Scholar
47.Kniep, R. and Busch, S., Angew. Chem. Int. Ed. 35 (1996) p. 2624.Google Scholar
48.Busch, S., Schwarz, U., and Kniep, R., Adv. Funct. Mater. 13 (2003) p. 189.CrossRefGoogle Scholar
49.Simon, P., Carillo-Cabrera, W., Formanek, P., Göbel, C., Geiger, D., Ramlau, R., Tlatlik, H., Buder, J., and Kniep, R., J. Mater. Chem. 14 (2004) p. 2218.CrossRefGoogle Scholar
50.Jongen, N., Bowen, P., Lemaitre, J., Valmalette, J.C., and Hofmann, H., J. Colloid Interface Sci. 226 (2000) p. 189.Google Scholar
51.Soare, L.C., “Precipitation and Transformation of Nanostructured Copper Oxalate and Copper/Cobalt Composite Precursor Synthesis,” PhD thesis, No. 3083, Ecole Polytechnique Federale de Lausanne (2004).Google Scholar
52.Pujol, O., Bowen, P., Stadelmann, P.A., and Hofmann, H., J. Phys. Chem. B 108 (2004) p. 13128.Google Scholar
53.Jana, N.R., Gearheart, L., and Murphy, C.J., J. Phys. Chem. B 105 (2001) p. 4065.CrossRefGoogle Scholar
54.Jana, N.R., Gearheart, L., and Murphy, C.J., Chem. Commun. (2001) p. 617.CrossRefGoogle Scholar
55.Chen, S., Fan, Z., and Carroll, D.L., J. Phys. Chem. B 106 (2002) p. 10777.Google Scholar
56.Li, M., Mann, S., Adv. Funct. Mater. 12 (2002) p. 773.CrossRefGoogle Scholar
57.Li, M., Lebeau, B., and Mann, S., Adv. Mater. 15 (2003) p. 2032.Google Scholar
58.Shi, H.T., Qi, L.M., Ma, J.M., Cheng, H., and Zhu, B.Y., Adv. Mater. 15 (2003) p. 1647.CrossRefGoogle Scholar
59.Chemseddine, A., Jungblut, H., and Boulmaaz, S., J. Phys. Chem. 100 (1996) p. 12546.Google Scholar
60.Sun, S., Murray, C.B., Weller, D., Folks, L., and Moser, A., Science 287 (2000) p. 1989.CrossRefGoogle Scholar
61.Sun, S. and Murray, C.B., J. Appl. Phys. 85 (1999) p. 4325.CrossRefGoogle Scholar
62.Kiely, C.J., Fink, J., Brust, M., Bethel, D., and Schiffrin, D.J., Nature 396 (1998) p. 444.Google Scholar
63.Tang, Z.Y., Kotov, N.A., and Giersig, M., Science 297 (2002) p. 237.CrossRefGoogle Scholar
64.Arias, J.L. and Fernandez, M.S., Mater. Character. 50 (2003) p. 189.Google Scholar
65.Peytcheva, A., Cölfen, H., and Antonietti, M., Colloid Polym. Sci. 280 (2002) p. 218.Google Scholar
66.Gower, L.A. and Tirrell, D.A., J. Crystal Growth 191 (1998) p. 153.Google Scholar
67.Gower, L.B. and Odom, D.J., J. Crystal Growth 210 (2000) p. 719.CrossRefGoogle Scholar
68.Yu, S.H., Cölfen, H., Xu, A.W., and Dong, W.F., Cryst. Growth Des. 4 (2004) p. 33.CrossRefGoogle Scholar
69.Bigi, A., Boanini, E., Walsh, D., and Mann, S., Angew. Chem. Int. Ed. 41 (2002) p. 2163.Google Scholar
70.Qi, L.M., Cölfen, H., Antonietti, M., Li, M., Hopwood, J.D., Ashley, A.J., and Mann, S., Chem. Eur. J. 7 (2001) p. 3526.3.0.CO;2-Z>CrossRefGoogle Scholar
71.Yu, S.H., Antonietti, M., Cölfen, H., and Hartmann, J., Nano Lett. 3 (2003) p. 379.Google Scholar
72.Rieger, J., Tens. Surf. Det. 39 (2002) p. 221.Google Scholar
73.Rieger, J., Hädicke, E., Rau, I.U., and Boeckh, D., Tens. Surf. Det. 34 (1997) p. 430.Google Scholar
74.Sugawara, T., Suwa, Y., Ohkawa, K., and Yamamoto, H., Macromol. Rapid Commun. 24 (2003) p. 847.CrossRefGoogle Scholar
75.Cölfen, H., Macromol. Rapid. Commun. 22 (2001) p. 219.3.0.CO;2-G>CrossRefGoogle Scholar
76.Yu, S.H. and Cölfen, H., J. Mater. Chem. 14 (2004) p. 2124.CrossRefGoogle Scholar
77.Antonietti, M., Current Opin. Colloid Inter. Sci. 6 (2001) p. 244.Google Scholar
78.Yu, S.H., Cölfen, H., and Mastai, Y., J. Nanosci. Nanotechnol. 4 (2004) p. 291.Google Scholar
79.Napper, D.H., Polymeric Stabilization of Colloidal Dispersions (Academic Press, London, 1983) p. 1.Google Scholar
80.Antonietti, M., Nature Mater. 2 (2003) p. 9.Google Scholar
81.Rudloff, J. and Cölfen, H., Langmuir 20 (2004) p. 991.Google Scholar
82.Shi, H.T., Qi, L.M., Ma, J., and Cheng, H., J. Am. Chem. Soc. 125 (2003) p. 3450.CrossRefGoogle Scholar
83.Shi, H.T., Qi, L.M., Ma, J.M., and Wu, N.Z., Adv. Funct. Mater. 15 (2005) p. 442.Google Scholar
84.Yu, S.H., Cölfen, H., Tauer, K., and Antonietti, M., Nature Mater. 4 (2005) p. 51.CrossRefGoogle Scholar
85.Rudloff, J., Antonietti, M., Cölfen, H., Pretula, J., Kaluzynski, K., and Penczek, S., Macromol. Chem. Phys. 203 (2002) p. 627.Google Scholar