Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T06:50:32.510Z Has data issue: false hasContentIssue false

Relaxor-ferroelectric transitions: Sodium bismuth titanate derivatives

Published online by Cambridge University Press:  10 August 2018

Alisa R. Paterson
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, USA; apaters@ncsu.edu
Hajime Nagata
Affiliation:
Department of Electrical Engineering, Tokyo University of Science, Japan; h-nagata@rs.noda.tus.ac.jp
Xiaoli Tan
Affiliation:
Department of Materials Science and Engineering, Iowa State University of Science and Technology, USA; xtan@iastate.edu
John E. Daniels
Affiliation:
School of Materials Science and Engineering, University of New South Wales, Australia; j.daniels@unsw.edu.au
Manuel Hinterstein
Affiliation:
Institute for Applied Materials, Karlsruhe Institute of Technology, Germany; manuel.hinterstein@kit.edu
Rajeev Ranjan
Affiliation:
Department of Materials Engineering, Indian Institute of Science, India; rajeev@iisc.ac.in
Pedro B. Groszewicz
Affiliation:
Fachbereich Chemie, Technische Universität Darmstadt, Germany; groszewicz@chemie.tu-darmstadt.de
Wook Jo
Affiliation:
School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, South Korea; wookjo@unist.ac.kr
Jacob L. Jones
Affiliation:
Department of Materials Science and Engineering, North Carolina State University, USA; jacobjones@ncsu.edu
Get access

Abstract

Sodium bismuth titanate (NBT) and its solid solutions with other ABO3 perovskites are of great interest for lead-free ferroelectric and piezoelectric applications. In this article, we provide an introduction to the complex structure of NBT, including atomic displacements and nanoscale defects. We also review poling effects and properties as well as NBT-ABO3 phase equilibria. The interesting relaxor properties, frequency dispersion in dielectric permittivity, and field-induced structural phase transitions of these systems are discussed. Finally, we describe other functional, mechanical, and electrical properties of NBT.

Type
Lead-free Piezoceramics
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

“Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment” (2012), http://data.europa.eu/eli/dir/2012/19/oj.Google Scholar
“Directive 2011/65/EU of the European Parliament and of the Council of 8 June 2011 on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment” (2011).Google Scholar
“Directive 2000/53/EC of the European Parliament and of the Council of 18 September 2000 on End-of Life Vehicles” (2000), http://data.europa.eu/eli/dir/2000/53/oj.Google Scholar
Bell, A., Deubzer, O., MRS Bull. 43 (8), 581 (2018).CrossRefGoogle Scholar
Rödel, J., Jo, W., Seifert, K.T.P., Anton, E.M., Granzow, T., Damjanovic, D., J. Am. Ceram. Soc. 92, 1153 (2009).CrossRefGoogle Scholar
Smolenskii, G., Isupov, V., Agranovskaya, A., Krainik, N., Sov. Phys. Solid State 2, 2651 (1961).Google Scholar
Jaffe, B., Cook, W., Jaffe, H., Piezoelectric Ceramics (Academic Press, London, 1971).CrossRefGoogle Scholar
Nagata, H., Takenaka, T., in Advanced Piezoelectric Materials, Uchino, K., Ed. (Woodhead Publishing, Cambridge, UK, 2017), pp. 155196.CrossRefGoogle Scholar
Orgel, L.E., J. Chem. Soc. 9, 3815 (1959).CrossRefGoogle Scholar
Schütz, D., Deluca, M., Krauss, W., Feteira, A., Jackson, T., Reichmann, K., Adv. Funct. Mater. 22, 2285 (2012).CrossRefGoogle Scholar
Zvirgzds, J.A., Kapostin, P.P., Zvirgzde, J.V., Kruzina, T.V., Ferroelectrics 40, 75 (1982).CrossRefGoogle Scholar
Jones, G.O., Thomas, P.A., Acta Crystallogr. B 58, 168 (2002).CrossRefGoogle Scholar
Gorfman, S., Thomas, P.A., J. Appl. Crystallogr. 43, 1409 (2010).CrossRefGoogle Scholar
Aksel, E., Forrester, J.S., Jones, J.L., Thomas, P.A., Page, K., Suchomel, M.R., Appl. Phys. Lett. 98, 3 (2011).CrossRefGoogle Scholar
Aksel, E., Forrester, J.S., Kowalski, B., Jones, J.L., Thomas, P.A., Appl. Phys. Lett. 99, 222901 (2011).CrossRefGoogle Scholar
Shuvaeva, V.A., Zekria, D., Glazer, A.M., Jiang, Q., Weber, S.M., Bhattacharya, P., Thomas, P.A., Phys. Rev. B Condens. Matter 71, 174114 (2005).CrossRefGoogle Scholar
Keeble, D.S., Barney, E.R., Keen, D.A., Tucker, M.G., Kreisel, J., Thomas, P.A., Adv. Funct. Mater. 23, 185 (2013).CrossRefGoogle Scholar
Aksel, E., Forrester, J.S., Nino, J.C., Page, K., Shoemaker, D.P., Jones, J.L., Phys. Rev. B Condens. Matter 87, 104113 (2013).CrossRefGoogle Scholar
Groszewicz, P.B., Breitzke, H., Dittmer, R., Sapper, E., Jo, W., Buntkowsky, G., Rödel, J., Phys. Rev. B Condens. Matter 90, 220104 (2014).CrossRefGoogle Scholar
Groszewicz, P.B., Gröting, M., Breitzke, H., Jo, W., Albe, K., Buntkowsky, G., Rödel, J., Sci. Rep. 6, 31739 (2016).CrossRefGoogle Scholar
Groszewicz, P.B., Breitzke, H., Jo, W., Rödel, J., Buntkowsky, G., J. Appl. Phys. 121, 114104 (2017).CrossRefGoogle Scholar
Rao, B.N., Olivi, L., Sathe, V., Ranjan, R., Phys. Rev. B Condens. Matter 93, 24106 (2016).CrossRefGoogle Scholar
Kreisel, J., Bouvier, P., Dkhil, B., Thomas, P.A., Glazer, A.M., Welberry, T.R., Chaabane, B., Mezouar, M., Phys. Rev. B Condens. Matter 68, 14113 (2003).CrossRefGoogle Scholar
Dorcet, V., Trolliard, G., Acta Mater. 56, 1753 (2008).CrossRefGoogle Scholar
Balagurov, A.M., Koroleva, E.Y., Naberezhnov, A.A., Sakhnenko, V.P., Savenko, B.N., Ter-Oganessian, N.V., Vakhrushev, S.B., Phase Transit. 79, 163 (2006).CrossRefGoogle Scholar
Thomas, P.A., Trujillo, S., Boudard, M., Gorfman, S., Kreisel, J., Solid State Sci. 12, 311 (2010).CrossRefGoogle Scholar
Levin, I., Reaney, I.M., Adv. Funct. Mater. 22, 3445 (2012).CrossRefGoogle Scholar
Beanland, R., Thomas, P.A., Phys. Rev. B Condens. Matter 89, 174102 (2014).CrossRefGoogle Scholar
Daniels, J.E., Jo, W., Rödel, J., Jones, J.L., Appl. Phys. Lett. 95, 32904 (2009).CrossRefGoogle Scholar
Simons, H., Daniels, J.E., Jo, W., Dittmer, R., Studer, A., Avdeev, M., Rödel, J., Hoffman, M., Appl. Phys. Lett. 98, 50 (2011).CrossRefGoogle Scholar
Ma, C., Guo, H., Beckman, S.P., Tan, X., Phys. Rev. Lett. 109, 107602 (2012).CrossRefGoogle Scholar
Garg, R., Rao, B.N., Senyshyn, A., Krishna, P.S.R., Ranjan, R., Phys. Rev. B Condens. Matter 88, 14103 (2013).CrossRefGoogle Scholar
Daniels, J.E., Jo, W., Rödel, J., Rytz, D., Donner, W., Appl. Phys. Lett. 98, 252904 (2011).CrossRefGoogle Scholar
Usher, T.-M., Levin, I., Daniels, J.E., Jones, J.L., Sci. Rep. 5, 14678 (2015).CrossRefGoogle Scholar
Rao, B.N., Ranjan, R., Phys. Rev. B Condens. Matter 86, 134103 (2012).CrossRefGoogle Scholar
Rao, B.N., Fitch, A.N., Ranjan, R., Phys. Rev. B Condens. Matter 87, 060102(R) (2013).CrossRefGoogle Scholar
Khatua, D.K., Mehrotra, T., Mishra, A., Majumdar, B., Senyshyn, A., Ranjan, R., Acta Mater. 134, 177 (2017).CrossRefGoogle Scholar
Takenaka, T., Maruyama, K., Sakata, K., Jpn. J. Appl. Phys. 30, 2236 (1991).CrossRefGoogle Scholar
Nagata, H., Yoshida, M., Makiuchi, Y., Takenaka, T., Jpn. J. Appl. Phys. 42, 7401 (2003).CrossRefGoogle Scholar
Sasaki, A., Chiba, T., Mamiya, Y., Otsuki, E., Jpn. J. Appl. Phys. 38, 5564 (1999).CrossRefGoogle Scholar
Royles, A.J., Bell, A.J., Daniels, J.E., Milne, S.J., Comyn, T.P., Appl. Phys. Lett. 98, 182904 (2011).CrossRefGoogle Scholar
Ma, C., Guo, H., Tan, X., Adv. Funct. Mater. 23, 5261 (2013).CrossRefGoogle Scholar
Jo, W., Rödel, J., Appl. Phys. Lett. 99, 42901 (2011).CrossRefGoogle Scholar
Chen, D., Ayrikyan, A., Webber, K.G., Kamlah, M., J. Appl. Phys. 121, 114106 (2017).CrossRefGoogle Scholar
Jo, W., Daniels, J.E., Jones, J.L., Tan, X., Thomas, P.A., Damjanovic, D., Rödel, J., J. Appl. Phys. 109, 14110 (2011).CrossRefGoogle Scholar
Yoshii, K., Hiruma, Y., Nagata, H., Takenaka, T., Jpn. J. Appl. Phys. 45, 4493 (2006).CrossRefGoogle Scholar
Davies, M., Aksel, E., Jones, J.L., J. Am. Ceram. Soc. 94, 1314 (2011).CrossRefGoogle Scholar
Hiruma, Y., Nagata, H., Takenaka, T., J. Appl. Phys. 105, 84112 (2009).CrossRefGoogle Scholar
Foronda, H., Deluca, M., Aksel, E., Forrester, J.S., Jones, J.L., Mater. Lett. 115, 132 (2014).CrossRefGoogle Scholar
Rao, B.N., Datta, R., Chandrashekaran, S.S., Mishra, D.K., Sathe, V., Senyshyn, A., Ranjan, R., Phys. Rev. B Condens. Matter 88, 224103 (2013).CrossRefGoogle Scholar
Gorfman, S., Glazer, A.M., Noguchi, Y., Miyayama, M., Luo, H., Thomas, P.A., J. Appl. Crystallogr. 45, 444 (2012).CrossRefGoogle Scholar
Lin, D., Xiao, D., Zhu, J., Yu, P., Appl. Phys. Lett. 88, 62901 (2006).CrossRefGoogle Scholar
Yuan, Y., Zhang, S., Zhou, X., Liu, J., Jpn. J. Appl. Phys. 45, 831 (2006).CrossRefGoogle Scholar
Zhang, J., Pan, Z., Guo, F.-F., Liu, W.-C., Ning, H., Chen, Y.B., Lu, M.-H., Yang, B., Chen, J., Zhang, S.-T., Xing, X., Rödel, J., Cao, W., Chen, Y.-F., Nat. Commun. 6, 6615 (2015).CrossRefGoogle Scholar
Miura, T., Nagata, H., Takenaka, T., Jpn. J. Appl. Phys. 56, 10PD05 (2017).CrossRefGoogle Scholar
Muramatsu, H., Nagata, H., Takenaka, T., Jpn. J. Appl. Phys. 55, 10TB07 (2016).CrossRefGoogle Scholar
Jo, W., Dittmer, R., Acosta, M., Zang, J., Groh, C., Sapper, E., Wang, K., Rödel, J., J. Electroceram. 29, 71 (2012).CrossRefGoogle Scholar
Liu, X., Tan, X., Adv. Mater. 28, 574 (2016).CrossRefGoogle ScholarPubMed
Cross, L.E., Ferroelectrics 76, 241 (1987).CrossRefGoogle Scholar
Bokov, A.A., Ye, Z.-G., J. Mater. Sci. 41, 31 (2006).CrossRefGoogle Scholar
Ahn, C.W., Hong, C.-H., Choi, B.-Y., Kim, H.-P., Han, H.-S., Hwang, Y., Jo, W., Wang, K., Li, J.-F., Lee, J.-S., Kim, I.W., J. Korean Phys. Soc. 68, 1481 (2016).CrossRefGoogle Scholar
Kleemann, W., Int. J. Mod. Phys. B 7, 2469 (1993).CrossRefGoogle Scholar
Kalinin, S.V., Morozovska, A.N., Chen, L.Q., Rodriguez, B.J., Rep. Prog. Phys. 73, 56502 (2010).CrossRefGoogle Scholar
Burkovsky, R.G., Bronwald, Y.A., Filimonov, A.V., Rudskoy, A.I., Chernyshov, D., Bosak, A., Hlinka, J., Long, X., Ye, Z.-G., Vakhrushev, S.B., Phys. Rev. Lett. 109, 97603 (2012).CrossRefGoogle Scholar
Ge, W., Luo, C., Devreugd, C.P., Zhang, Q., Ren, Y., Li, J., Luo, H., Viehland, D., Appl. Phys. Lett. 103, 241914 (2013).CrossRefGoogle Scholar
Pirc, R., Blinc, R., Phys. Rev. B Condens. Matter 76, 20101 (2007).CrossRefGoogle Scholar
Stock, C., Van Eijck, L., Fouquet, P., Maccarini, M., Gehring, P.M., Xu, G., Luo, H., Zhao, X., Li, J.-F., Viehland, D., Phys. Rev. B Condens. Matter 81, 144127 (2010).CrossRefGoogle Scholar
Kojima, S., Ohta, R., Ariizumi, T., Zushi, J., J. Phys. Conf. Ser. 428, 12027 (2013).CrossRefGoogle Scholar
Burns, G., Dacol, F.H., Phys. Rev. B Condens. Matter 28, 2527 (1983).CrossRefGoogle Scholar
Burns, G., Dacol, F.H., Solid State Commun. 48, 853 (1983).CrossRefGoogle Scholar
Viehland, D., Jang, S.J., Cross, L.E., Wuttig, M., J. Appl. Phys. 68, 2916 (1990).CrossRefGoogle Scholar
Viehland, D., Li, J.F., Jang, S.J., Cross, L.E., Wuttig, M., Phys. Rev. B Condens. Matter 46, 8013 (1992).CrossRefGoogle Scholar
Kling, J., Tan, X., Jo, W., Kleebe, H.-J., Fuess, H., Rödel, J., J. Am. Ceram. Soc. 93, 2452 (2010).CrossRefGoogle Scholar
Siny, I.G., Tu, C.-S., Schmidt, V.H., Phys. Rev. B Condens. Matter 51, 5659 (1995).CrossRefGoogle Scholar
Shvartsman, V.V., Lupascu, D.C., J. Am. Ceram. Soc. 95, 1 (2012).CrossRefGoogle Scholar
Daniels, J.E., Jo, W., Rödel, J., Honkimäki, V., Jones, J.L., Acta Mater. 58, 2103 (2010).CrossRefGoogle Scholar
Aksel, E., Forrester, J.S., Kowalski, B., Deluca, M., Damjanovic, D., Jones, J.L., Phys. Rev. B Condens. Matter 85, 24121 (2012).CrossRefGoogle Scholar
Simon, A., Ravez, J., Maglione, M., J. Phys. Condens. Matter 16, 963 (2004).CrossRefGoogle Scholar
Jo, W., Schaab, S., Sapper, E., Schmitt, L.A., Kleebe, H.-J., Bell, A.J., Rödel, J., J. Appl. Phys. 110, 74106 (2011).CrossRefGoogle Scholar
Zhang, S.-T., Kounga, A.B., Aulbach, E., Ehrenberg, H., Rödel, J., Appl. Phys. Lett. 91, 112906 (2007).CrossRefGoogle Scholar
Jo, W., Granzow, T., Aulbach, E., Rödel, J., Damjanovic, D., J. Appl. Phys. 105, 94102 (2009).CrossRefGoogle Scholar
Kim, H.-P., Ahn, C.W., Hwang, Y., Lee, H.-Y., Jo, W., J. Korean Ceram. Soc. 54, 86 (2017).CrossRefGoogle Scholar
Hinterstein, M., Knapp, M., Hölzel, M., Jo, W., Cervellino, A., Ehrenberg, H., Fuess, H., J. Appl. Crystallogr. 43, 1314 (2010).CrossRefGoogle Scholar
Khansur, N.H., Hinterstein, M., Wang, Z., Groh, C., Jo, W., Daniels, J.E., Appl. Phys. Lett. 107, 242902 (2015).CrossRefGoogle Scholar
Tan, X., Aulbach, E., Jo, W., Granzow, T., Kling, J., Marsilius, M., Kleebe, H.-J., Rödel, J., J. Appl. Phys. 106, 44107 (2009).CrossRefGoogle Scholar
Li, M., Zhang, H., Cook, S.N., Li, L., Kilner, J.A., Reaney, I.M., Sinclair, D.C., Chem. Mater. 27, 629 (2015).CrossRefGoogle Scholar
Li, L., Li, M., Zhang, H., Reaney, I.M., Sinclair, D.C., J. Mater. Chem. C 4, 5779 (2016).CrossRefGoogle Scholar
Li, M., Pietrowski, M.J., De Souza, R.A., Zhang, H., Reaney, I.M., Cook, S.N., Kilner, J.A., Sinclair, D.C., Nat. Mater. 13, 31 (2013).CrossRefGoogle Scholar