Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T19:54:57.227Z Has data issue: false hasContentIssue false

Piezoelectric MEMS for energy harvesting

Published online by Cambridge University Press:  12 November 2012

Sang-Gook Kim
Affiliation:
Department of Mechanical Engineering, MIT, Cambridge, MA; sangkim@mit.edu
Shashank Priya
Affiliation:
Center for Energy Harvesting Materials and Systems, Virginia Tech, Blacksburg, VA; spriya@vt.edu
Isaku Kanno
Affiliation:
Department of Mechanical Engineering, Kobe University, Japan; kanno@mech.kobe-u.ac.jp
Get access

Abstract

Piezoelectric microelectromechanical systems (MEMS) have been proven to be an attractive technology for harvesting small magnitudes of energy from ambient vibrations. This technology promises to eliminate the need for replacing chemical batteries or complex wiring in microsensors/microsystems, moving us closer toward battery-less autonomous sensors systems and networks. To achieve this goal, a fully assembled energy harvester the size of a US quarter dollar coin (diameter = 24.26 mm, thickness = 1.75 mm) should be able to robustly generate about 100 μW of continuous power from ambient vibrations. In addition, the cost of the device should be sufficiently low for mass scale deployment. At the present time, most of the devices reported in the literature do not meet these requirements. This article reviews the current state of the art with respect to the key challenges such as high power density and wide bandwidth of operation. This article also describes improvements in piezoelectric materials and resonator structure design, which are believed to be the solutions to these challenges. Epitaxial growth and grain texturing of piezoelectric materials is being developed to achieve much higher energy conversion efficiency. For embedded medical systems, lead-free piezoelectric thin films are being developed, and MEMS processes for these new classes of materials are being investigated. Nonlinear resonating beams for wide bandwidth resonance are also being developed to enable more robust operation of energy harvesters.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Priya, S., Inman, D., Eds., Energy Harvesting Technologies (Springer, NY, 2009).CrossRefGoogle Scholar
Chandrakasan, A., Amirtharajah, R., Goodman, J., Rabiner, W., Proc. of the IEEE International Symposium on Circuits and Systems, ISCAS ‘98 (1998).
Beeby, S.P., Tudor, M.J., White, N.M., Meas. Sci. Technol. 17 (2006).CrossRef
Wang, Z., Song, J., Science 312, 242 (2006).CrossRefPubMed
Marin, A., Bressers, S., Priya, S., J. Phys. D: Appl. Phys. 44, 295501 (2011).CrossRef
Bono, D.C., Sliski, A., Huang, J., O’Handley, R.C., US Patent 7,569,952 B1, (2009).
Krulevitch, P., Lee, A.P., Ramsey, P.B., Trevino, J.C., Hamilton, J., Northrup, M.A., J. Microelectromech. Syst. 5 (4), 270 (1996).CrossRef
Muralt, P., Polcawich, R.G., Trolier-McKinstry, S., MRS Bull. 34 (9) (2009).CrossRef
Hajati, A., Kim, S.G., Appl. Phys. Lett. 99, 083105 (2011).CrossRef
Kim, H.-U., Lee, W.-H., Rasika Dias, H.V., Priya, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56, 1555 (2009).
Roundy, S., Wright, P.K., Smart Mater. Struct. 13, 1131 (2004).CrossRef
Jeon, Y.B., Sood, R., Jeong, J.H., Kim, S.-G., Sens. Actuators 122, 16 (2005).CrossRef
Morimoto, K., Kanno, I., Wasa, K., Kotera, H., Sens. Actuators, A 163, 428 (2010).CrossRef
Kim, H., Priya, S., Stephanou, H., Uchino, K., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 1851 (2007).CrossRef
Jiang, J., Miles, R.N., J. Sound Vib. 220 (4), 683 (1999).CrossRef
Findeisen, D., System Dynamics and Mechanical Vibrations: An Introduction (Springer, NY, 2000).CrossRefGoogle Scholar
Ginsberg, J.H., Mechanical and Structural Vibrations: Theory and Applications (Wiley, NY, 2001).Google Scholar
Uchino, K., Ferroelectric Devices (Marcel Dekker, NY, 2000).Google Scholar
Hajati, A., PhD thesis, Massachusetts Institute of Technology (2010).
Renaud, M., Karakaya, K., Sterken, T., Fiorini, P., Van Hoof, C., Puers, R., Sens. Actuators, A 145146, 380 (2008).CrossRef
Roundy, S., Wright, P.K., Rabaey, J.M., Energy Scavenging for Wireless Sensor Networks (Kluwer Academic Publishers, Boston, 2003).Google Scholar
Reilly, E.K., Miller, L.M., Fain, R., Wright, P., Proc. PowerMEMS 312 (2009).
Erturk, A., Inman, D.J., J. Intell. Mater. Syst. Struct. 19, 1311 (2008).CrossRef
Roundy, S., Wright, P.K., Rabaey, J., Comput. Commun. 26 (11), 1131 (2003).CrossRef
Muralt, P., Marzencki, M., Belgacem, B., Calame, F., Basrour, S., Proc. Chem. 1, 1191 (2009).CrossRef
Massaro, A., De Guido, S., Ingrosso, I., Cingolani, R., De Vittorio, M., Cori, M., Bertacchini, A., Larcher, L., Passaseo, A., Appl. Phys. Lett. 98, 053502 (2011).CrossRef
Miller, L.M., Halvorsen, E., Dong, T., Wright, P.K., J. Micromech. Microeng. 21, 045029 (2011).CrossRef
Durou, H., Ardilla-Rodriguez, G.A., Ramond, A., Dollat, X., Rossi, C., Esteve, D., PowerMEMS (Leuven, Belgium, 2010).Google Scholar
Isarakorn, D., Briand, D., Janphuang, P., Sambri, A., Gariglio, S., Triscone, J.-M., Guy, F., Reiner, J.W., Ahn, C.H., de Rooij, N.F., Smart Mater. Struct. 20 (2), (2011).CrossRef
Defosseux, M., Allain, M., Ivaldi, P., Defay, E., Basrour, S., Proc. of 16th International Conference on Solid-StateSensors, Actuators and Microsystems (Transducers 2011) (Beijing, China, June 2011), pp. 18591862.CrossRefGoogle Scholar
Marzencki, M., Ammar, Y., Basrour, S., Proc. Int. Conf. on Solid-State Sensors, Actuators, and Microsystems, Lyon (2007), pp. 887890.
Hirasawa, T., Yen, T.-T., Wright, P.K., Pisano, A.P., Lin, L., Int. Workshop on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS 2010) (Leuven, Belgium, 2010), pp. 211214.Google Scholar
Yen, T.-T., Hirasawa, T., Wright, P.K., Pisano, A.P., Lin, L., J. Micromech. Microeng. 21, 085037 (2011).CrossRef
Bertacchini, A., Scorcioni, S., Dondi, D., Larcher, L., Pavan, P., Todaro, M.T.Campa, A., Caretto, G., Petroni, S., Passaseo, A., De Vittorio, M., Proceedings of the European Solid-State Device Research Conference (ESSDERC) 12–16 September 2011 (2011), pp. 119122.Google Scholar
van Schaijk, R., Elfrink, R., Kamel, T.M., Goedbloed, M., IEEE Sensors Conference (2008), pp. 4548.Google Scholar
Elfrink, R., Pop, V., Hohlfeld, D., Kamel, T., Matova, S., de Nooijer, C., Jambunathan, M., Goedbloed, M., Caballero Guindo, L., Renaud, M., Penders, J., van Schaijk, R., IEEE International Electron Devices Meeting (IEDM) (2009), pp. 543546.Google Scholar
Elfrink, R., Kamel, T.M., Goedbloed, M., Matova, S., Hohlfeld, D., Van Andel, Y., van Schaijk, R., J. Micromech. Microeng. 19, 095005 (2009).CrossRef
Elfrink, R., Renaud, M., Kamel, T.M., de Nooijer, C., Jambunathan, M., Goedbloed, M., Hohlfeld, D., Matova, S., Pop, V., Caballero, L., van Schaijk, R., J. Micromech. Microeng. 20, 104001 (2010).CrossRef
Xu, R., Lei, A., Christiansen, T.L., Hansen, K., Guizzetti, M., Birkelund, K., Thomsen, E.V., Hansen, O., Proc. of 16th International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers’11) (Beijing, China, 2011), pp. 679682.CrossRefGoogle Scholar
Lei, A., Xu, R., Thyssen, A., Stoot, A.C., Christiansen, T.L., Hansen, K., Lou-Møller, R., Thomsen, E.V., Birkelund, K., Proc. of The 24th International Conference on Micro Electro Mechanical Systems (MEMS’11) (Cancun, Mexico, 2011), pp. 125128.CrossRefGoogle Scholar
Park, J.C., Park, J.Y., Lee, Y.-P., J. Microelectromech. Syst. 19 (5), 1215 (2010).CrossRef
Fang, H.-B., Liu, J.-Q., Xu, Z.-Y., Dong, L., Wang, L., Chen, D., Cai, B.-C., Liu, Y., Microelectron. J. 37, 1280 (2006).CrossRef
Shen, D., Park, J.-H., Ajitsaria, J., Choe, S.-Y., Wikle, H.C. III, Kim, D.-J., J. Micromech. Microeng. 18, 055017 (2008).CrossRef
Lee, B.S., Lin, S.C., Wu, W.J., Wang, X.Y., Chang, P.Z., Lee, C.K., J. Micromech. Microeng. 19 (6), 065014 (2009).CrossRef
Aktakka, E.E., PhD thesis, University of Michigan (2012).
Priya, S., J. Electroceram. 19, 165 (2007).
Marin, A., Priya, S., Active and Passive Smart Structures and Integrated Systems 2012, Sodano, H.A., Ed. (SPIE, San Diego, CA), p. 83411L.
Xu, R., MS thesis, Massachusetts Institute of Technology (2012).
Dutoit, N., Wardle, B., Kim, S.-G., Integr. Ferroelectr. 71 (1), 121 (2005).CrossRef
Wang, Q.-M., Du, X.-H., Xu, B., Cross, L.E., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46, 638 (1999).CrossRef
Bernstein, J.J., Bottari, J., Houston, K., Kirkos, G., Miller, R., Xu, B., Ye, Y., Cross, L.E., IEEE 1999 Ultrasonics Symposium (Lake Tahoe, NV, 1999).Google Scholar
Xu, R., Kim, S.G., Power MEMS 2012, accepted.
Bedekar, V., Oliver, J., Priya, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 1513 (2010).CrossRef
Priya, S., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57, 2610 (2010).CrossRef
Defosseux, M., Allain, M., Ivaldi, P., Defay, E., Basrour, S., Transducers ’11, Beijing, China, 5–9 June 2011 (2011), pp. 18591862.Google Scholar
Ledermann, N., Muralt, P., Baborowski, J., Gentil, S., Mukati, K., Cantoni, M., Seifert, A., Setter, N., Sens. Actuators, A 105, 162 (2003).CrossRef
Martin, F., Muralt, P., Dubois, M.-A., Pezous, A., J. Vac. Sci. Technol., A 22, 361 (2004).CrossRef
Tsubouchi, K., Mikoshiba, N., IEEE Trans. Sonics Ultrason. SU-32, 634 (1985).CrossRef
Najafi, K., Galchev, T., Aktakka, E.E., Peterson, R.L., McCullagh, J., Transducers 2011, Beijing, China, pp. 18451850 (2011).Google Scholar
Al-ashtari, W., Hunstig, M., Hemsel, T., Sextro, W., Mechatronics 35019 (2012).
Mansour, M.O., Arafa, M.H., Megahed, S.M., Sens. Actuators, A 163 (1), 297 (2010).CrossRef
Uchino, K., Ferroelectric Devices, 2nd ed. (CRC Press, Boca Raton, FL, 2009).CrossRefGoogle Scholar
Han, G., Ryu, J., Yoon, W., Choi, J., Hahn, B., Kim, J., Park, D., Ahn, C., Priya, S., Jeong, D., J. Appl. Phys. 110, 124101 (2011).CrossRef
Tuttle, B.A., Voigt, J.A., Garino, T.J., Goodnow, D.C., Schwartz, R.W., Lamppa, D.L., Headley, T.J., Eatough, M.O., Proceedings of the 8th IEEE International Symposium on Application of Ferroelectrics (1992), p. P344.Google Scholar
Brennecka, G.L., Huebner, W., Tuttle, B.A., Clem, P.G., J. Am. Ceram. Soc. 87, 1459 (2004).CrossRef
Yokoyama, S., Ozeki, T., Oikawa, T., Funakubo, H., Jpn. J. Appl. Phys. 41, 6705 (2002).CrossRef
Kanno, I., Fujii, S., Kamada, T., Takayama, R., Appl. Phys, Lett. 70, 1378 (1997).CrossRef
Qi, Y., Kim, J., Nguyen, T.D., Lisko, B., Purohit, P.K., McAlpine, M.C., Nano Lett. 11 (3), 1331 (2011).CrossRef
Park, S.E., Shrout, T.R., J. Appl. Phys. 82, 1804 (1997).CrossRef
Kuwata, J., Uchino, K., Nomura, S., Jpn. J. Appl. Phys. 21, 1298 (1982).CrossRef
Baek, S.H., Park, J., Kim, D.M., Aksyuk, V.A., Das, R.R., Bu, S.D., Felker, D.A., Lettieri, J., Vaithyanathan, V., Bharadwaja, S.S.N., Bassiri-Gharb, N., Chen, Y.B., Sun, H.P., Folkman, C.M., Jang, H.W., Kreft, D.J., Streiffer, S.K., Ramesh, R., Pan, X.Q., Trolier-McKinstry, S., Schlom, D.G., Rzchowski, M.S., Blick, R.H., Eom, C.B., Science 334, 958 (2011).CrossRef
Ahn, C.W., Choi, C.H., Park, H.Y., Nahm, S., Priya, S., J. Mater. Sci. 43, 6784 (2008).CrossRef
Ahn, C.W., Park, C.S., Viehland, D., Nahm, S., Kang, D.H., Bae, K.S., Priya, S., Jpn. J. Appl. Phys. 47, 8880 (2008).CrossRef
Ahn, C.W., Maurya, D., Park, C.S., Nahm, S., Priya, S., J. Appl. Phys. 105, 114108 (2009).CrossRef
Shibata, K., Suenaga, K., Watanabe, K., Horikiri, F., Nomoto, A., Mishima, T., Jpn. J. Appl. Phys. 50, 041503 (2011).CrossRef
Kanno, I., Ichida, T., Adachi, K., Kotera, H., Shibata, K., Mishima, T., Sens. Actuators, A 179, 132 (2012).CrossRef
Muralt, P., J. Am. Ceram. Soc. 91, 1385 (2008).CrossRef
van Schaijk, R., Elfrink, R., Kamel, T.M., Goedbloed, M., IEEE Sensors 2008 Conference (2008), pp. 4548.CrossRef
Heidrich, N., Knoebber, F., Sah, R.E., Pletschen, W., Hampl, S., Cimalla, V., Lebedev, V., Transducers’11, Beijing, China, 5–9 June 2011 (2011), pp. 16421644.Google Scholar
Yen, T.-T., Hirasawa, T., Wright, P.K., Pisano, A.P., Lin, L., J. Micromech. Microeng. 21, 085037 (2011).CrossRef
Stoppel, F., Schroeder, C., Senger, F., Wagner, B., Benecke, W., Procedia Eng. 25, 721 (2011).CrossRef
Marinkovich, B., Koser, H., Appl. Phys. Lett. 94, 103505 (2009).CrossRef
Mann, B.P., Sims, N.D., J. Sound Vib. 319, 515 (2009).CrossRef
Barton, D.A.W., Burrow, S.G., Clare, L.R., J. Vib. Acoust. 132, 1 (2010).CrossRef
Erturk, A., Inman, D.J., J. Sound Vib. 330 (10), 2339 (2011).CrossRef
Andò, B., Baglio, S., Trigona, C., Dumas, N., Latorre, L., Nouet, P., J. Micromech. Microeng. 20, 125020 (2010).CrossRef
Cottone, F., Gammaitoni, L., Vocca, H., Ferrari, M., Ferrari, V., Smart Mater. Struct. 21 (2012).CrossRef
Xu, R., Hajati, A., Kim, S.G., Power MEMS 2011 (Seoul, Korea, 2011).Google Scholar
Badel, A., Guyomar, D., Lefeuvre, F., Richard, C., J. Intell. Mater. Syst. Struct. 16, 889 (2005).CrossRef