Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-12T12:56:16.898Z Has data issue: false hasContentIssue false

Nucleation of open framework materials: Navigating the voids

Published online by Cambridge University Press:  04 May 2016

Jeffrey D. Rimer
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Houston, USA; jrimer@central.uh.edu
Michael Tsapatsis
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, USA; tsapa001@umn.edu
Get access

Abstract

Research aimed at designing and optimizing open framework materials for commercial applications tend to focus on two critical objectives: identifying synthesis conditions that yield crystals with tailored physicochemical properties, and unlocking the untapped design space to achieve theoretical structures that far outnumber the list of synthetically realized materials. Accomplishing these goals requires detailed knowledge of nucleation in order to cultivate efficient, facile, and economical methods of controlling crystallization. The vast number of open framework materials that can be engineered through the judicious selection of inorganic or organic building units hold the promise for future discovery of materials with unique and superior properties compared to available porous materials. Herein, we review what is known about the nucleation of open framework crystals, highlighting the voids in our understanding of nucleation pathways, and we offer guidelines for advancing crystal engineering in this exciting area of research.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dincǎ, M., Dailly, A., Liu, Y., Brown, C.M., Neumann, D.A., Long, J.R., J. Am. Chem. Soc. 128, 16876 (2006).CrossRefGoogle Scholar
Furukawa, H., Cordova, K.E., O’Keeffe, M., Yaghi, O.M., Science, 341, 974 (2013).Google Scholar
Smith, B.J., Hwang, N., Chavez, A.D., Novotney, J.L., Dichtel, W.R., Chem. Commun. 51, 7532 (2015).Google Scholar
Liu, Y.Z., Hu, C.H., Comotti, A., Ward, M.D., Science 333, 436 (2011).CrossRefGoogle ScholarPubMed
Davis, M.E., Nature 417, 813 (2002).Google Scholar
Martinez, C., Corma, A., Coord. Chem. Rev. 255, 1558 (2011).Google Scholar
Snyder, M.A., Tsapatsis, M., Angew. Chem. Int. Ed. 46, 7560 (2007).Google Scholar
Yaghi, O.M., O’Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M., Kim, J., Nature 423, 705 (2003).Google Scholar
Corma, A., Garcia, H., Xamena, F., Chem. Rev. 110, 4606 (2010).Google Scholar
Cote, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J., Yaghi, O.M., Science 310, 1166 (2005).Google Scholar
Morris, R.E., Cejka, J., Nat. Chem. 7, 381 (2015).Google Scholar
Deem, M.W., Pophale, R., Cheeseman, P.A., Earl, D.J., J. Phys. Chem. C 113, 21353 (2009).Google Scholar
Colon, Y.J., Snurr, R.Q., Chem. Soc. Rev. 43, 5735 (2014).Google Scholar
Corma, A., Rey, F., Rius, J., Sabater, M.J., Valencia, S., Nature 431, 287 (2004).CrossRefGoogle Scholar
Rimer, J.D., Kumar, M., Li, R., Lupulescu, A.I., Oleksiak, M.D., Catal. Sci. Technol. 4, 3762 (2014).Google Scholar
Wilmer, C.E., Leaf, M., Lee, C.Y., Farha, O.K., Hauser, B.G., Hupp, J.T., Snurr, R.Q., Nat. Chem. 4, 83 (2012).Google Scholar
Smith, B.J., Dichtel, W.R., J. Am. Chem. Soc. 136, 8783 (2014).Google Scholar
De Yoreo, J.J., Gilbert, P., Sommerdijk, N., Penn, R.L., Whitelam, S., Joester, D., Zhang, H.Z., Rimer, J.D., Navrotsky, A., Banfield, J.F., Wallace, A.F., Michel, F.M., Meldrum, F.C., Colfen, H., Dove, P.M., Science 349, 498 (2015).Google Scholar
Kashchiev, D., J. Chem. Phys. 118, 1837 (2003).CrossRefGoogle Scholar
Cundy, C.S., Cox, P.A., Microporous Mesoporous Mater. 82, 1 (2005).Google Scholar
Galkin, O., Vekilov, P.G., Proc. Natl. Acad. Sci. U.S.A. 97, 6277 (2000).Google Scholar
Vekilov, P.G., Cryst. Growth Des. 10, 5007 (2010).Google Scholar
Rimer, J.D., Vlachos, D.G., Lobo, R.F., J. Phys. Chem. B 109, 12762 (2005).Google Scholar
de Moor, P., Beelen, T.P.M., van Santen, R.A., J. Phys. Chem. B 103, 1639 (1999).Google Scholar
Hould, N.D., Lobo, R.F., Chem. Mater. 20, 5807 (2008).Google Scholar
Maldonado, M., Oleksiak, M.D., Chinta, S., Rimer, J.D., J. Am. Chem. Soc. 135, 2641 (2013).Google Scholar
Ren, N., Subotic, B., Bronic, J., Tang, Y., Sikiric, M.D., Misic, T., Svetlicic, V., Bosnar, S., Jelic, T.A., Chem. Mater. 24, 1726 (2012).Google Scholar
Mintova, S., Olson, N.H., Bein, T., Angew. Chem. Int. Ed. 38, 3201 (1999).Google Scholar
Mintova, S., Olson, N.H., Valtchev, V., Bein, T., Science 283, 958 (1999).Google Scholar
Davis, T.M., Drews, T.O., Ramanan, H., He, C., Dong, J.S., Schnablegger, H., Katsoulakis, M.A., Kokkoli, E., McCormick, A.V., Penn, R.L., Tsapatsis, M., Nat. Mater. 5, 400 (2006).Google Scholar
Fedeyko, J.M., Rimer, J.D., Lobo, R.F., Vlachos, D.G., J. Phys. Chem. B 108, 12271 (2004).Google Scholar
Kumar, S., Davis, T.M., Ramanan, H., Penn, R.L., Tsapatsis, M., J. Phys. Chem. B 111, 3398 (2007).Google Scholar
Rimer, J.D., Lobo, R.F., Vlachos, D.G., Langmuir 21, 8960 (2005).CrossRefGoogle Scholar
Chien, S.-C., Auerbach, S.M., Monson, P.A., Langmuir 31, 4940 (2015).CrossRefGoogle Scholar
Kragten, D.D., Fedeyko, J.M., Sawant, K.R., Rimer, J.D., Vlachos, D.G., Lobo, R.F., Tsapatsis, M., J. Phys. Chem. B 107, 10006 (2003).Google Scholar
Rimer, J.D., Trofymluk, O., Navrotsky, A., Lobo, R.F., Vlachos, D.G., Chem. Mater. 19, 4189 (2007).Google Scholar
Kumar, S., Wang, Z.P., Penn, R.L., Tsapatsis, M., J. Am. Chem. Soc. 130, 17284 (2008).Google Scholar
Karwacki, L., Kox, M.H.F., de Winter, D.A.M., Drury, M.R., Meeldijk, J.D., Stavitski, E., Schmidt, W., Mertens, M., Cubillas, P., John, N., Chan, A., Kahn, N., Bare, S.R., Anderson, M., Kornatowski, J., Weckhuysen, B.M., Nat. Mater. 8, 959 (2009).Google Scholar
Penn, R.L., Banfield, J.F., Science 281, 969 (1998).Google Scholar
Li, D.S., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F., De Yoreo, J.J., Science 336, 1014 (2012).Google Scholar
Malani, A., Auerbach, S.M., Monson, P.A., J. Phys. Chem. C 115, 15988 (2011).Google Scholar
Verstraelen, T., Szyja, B.M., Lesthaeghe, D., Declerck, R., Van Speybroeck, V., Waroquier, M., Jansen, A.P.J., Aerts, A., Follens, L.R.A., Martens, J.A., Kirschhock, C.E.A., van Santen, R.A., Top. Catal. 52, 1261 (2009).Google Scholar
Yang, C.-S., Mora-Fonz, J.M., Catlow, C.R.A., J. Phys. Chem. C 116, 22121 (2012).Google Scholar
Zhang, X.-Q., Trinh, T.T., van Santen, R.A., Jansen, A.P.J., J. Am. Chem. Soc. 133, 6613 (2011).Google Scholar
Yang, C.S., Mora-Fonz, J.M., Catlow, C.R.A., J. Phys. Chem. C 117, 24796 (2013).Google Scholar
Park, M.B., Lee, Y., Zheng, A.M., Xiao, F.S., Nicholas, C.P., Lewis, G.J., Hong, S.B., J. Am. Chem. Soc. 135, 2248 (2013).Google Scholar
Lesthaeghe, D., Vansteenkiste, P., Verstraelen, T., Ghysels, A., Kirschhock, C.E.A., Martens, J.A., Van Speybroeck, V., Waroquier, M., J. Phys. Chem. C 112, 9186 (2008).Google Scholar
Schaack, B.B., Schrader, W., Schuth, T., Angew. Chem. Int. Ed. 47, 9092 (2008).Google Scholar
Follens, L.R.A., Aerts, A., Haouas, M., Caremans, T.P., Loppinet, B., Goderis, B., Vermant, J., Taulelle, F., Martens, J.A., Kirschhock, C.E.A., Phys. Chem. Chem. Phys. 10, 5574 (2008).Google Scholar
Jin, L., Auerbach, S.M., Monson, P.A., J. Phys. Chem. Lett. 3, 761 (2012).Google Scholar
Caratzoulas, S., Vlachos, D.G., Tsapatsis, M., J. Am. Chem. Soc. 128, 596 (2006).Google Scholar
Navrotsky, A., Trofymluk, O., Levchenko, A.A., Chem. Rev. 109, 3885 (2009).Google Scholar
Wu, D., Navrotsky, A., J. Solid State Chem. 223, 53 (2015).Google Scholar
Park, K.S., Ni, Z., Cote, A.P., Choi, J.Y., Huang, R.D., Uribe-Romo, F.J., Chae, H.K., O’Keeffe, M., Yaghi, O.M., Proc. Natl. Acad. Sci. U.S.A. 103, 10186 (2006).Google Scholar
Navrotsky, A., Proc. Natl. Acad. Sci. U.S.A. 101, 12096 (2004), doi:10.1073/pnas.0404778101.Google Scholar
Li, M.Y., Dincǎ, M., Chem. Mater. 27, 3203 (2015).Google Scholar
Oleksiak, M., Rimer, J.D., Rev. Chem. Eng. 30, 1 (2014).Google Scholar
Xie, B., Zhang, H.Y., Yang, C.G., Liu, S.Y., Ren, L.M., Zhang, L., Meng, X.J., Yilmaz, B., Muller, U., Xiao, F.S., Chem. Commun. 47, 3945 (2011).Google Scholar
Itabashi, K., Kamimura, Y., Iyoki, K., Shimojima, A., Okubo, T., J. Am. Chem. Soc. 134, 11542 (2012).Google Scholar
Eliášová, P., Opanasenko, M., Wheatley, P.S., Shamzhy, M., Mazur, M., Nachtigall, P., Roth, J.W., Morris, R.E., Čejka, J., Chem. Soc. Rev. 44, 7177 (2015).Google Scholar
Burkett, S.L., Davis, M.E., J. Phys. Chem. 98, 4647 (1994).Google Scholar
Schoeman, B.J., Sterte, J., Otterstedt, J.E., Zeolites 14, 568 (1994).Google Scholar