Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T09:49:04.808Z Has data issue: false hasContentIssue false

Why Phonon Behaviors in Transition Metal Dichalcogenides Matter

Published online by Cambridge University Press:  06 February 2019

Chenzhang Zhou
Affiliation:
Pennsylvania State University, University Park, PA16802, U. S. A.
Kofi Adu*
Affiliation:
Pennsylvania State University, University Park, PA16802, U. S. A. Pennsylvania State University, Altoona, PA, 16601, U. S. A.
*
*(Email: cxa269@psu.edu)
Get access

Abstract

Phonons are critical in understanding the electronic, optical and optoelectronic properties of transition metal dichalcogenides (TMDs). The interpretation of lineshapes is important for understanding the effect of specific physical processes on the electronic, optical and optoelectronic properties of TMDs. We employ an analytical approach to investigate the influence of the layered effect, the quantum size effect, the Breit-Wigner-Fano effect, and the inhomogeneous heating effect on the phonon lineshape of TMDs, using WS2 and MoS2 as prototypes. We demonstrate the similarities and differences in how individual processes affect the lineshapes and also the effect of combining processes. Such an approach is useful in guiding the interpretation of the phonon lineshapes of TMDs in particular, and nanostructures in general.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Manzeli, S., Ovchinnikov, D, Pasquier, D., Yazyev, O. V., Kris, A., Nature Reviews Materials, 2(8) 17033 (2017).CrossRefGoogle Scholar
Liu, Z., Liu, J. Z., Cheng, Y., Li, Z. H., Wang, L., Zheng, Q. S. Phys. Rev. B., 85(20) 205418 (2012).CrossRefGoogle Scholar
Ellis, J. K., Lucero, M. J. Gustavo, G. E., Applied Physics Letters, 99 (26) 261908 (2011).CrossRefGoogle Scholar
Splendiani, A., Sun, L., Zhang, Y., Li, T., Kim, J., Chim, C.-Y., Galli, G., and Wang, F.. Nano Lett,. 10, 1271 (2010).CrossRefGoogle Scholar
Mak, K. F., Lee, C., Hone, J., Shan, J., and Heinz, T. F.. Phys. Rev. Lett. , 105, 136805 (2010).CrossRefGoogle Scholar
Gao, Y. P., Wu, X., Huang, K. J, Xing, L. L., Zhang, Y. Y.. Liu, L., Cryst. Eng. Comm., 19, 404418 (2017).CrossRefGoogle Scholar
Kumar, P., Li, Z., Wong, S. L., Biomedical Applications of Functionalized Nanomaterials: Concept, Development and Clinical translation in Micro and nanotechnologies, Chapter 10, 289–314, Editors: Sarmento, Bruno and Neves, Jose das (2018).Google Scholar
Hou, S., Zhang, A., Su, M, Nanomaterials, 6, 58 (2016).CrossRefGoogle ScholarPubMed
Lee, C., yan, H, Brus, L. E., Heinz, T. F., Hone, J., Ryu, S., ACS Nano, 4, 2695 (2010).CrossRefGoogle Scholar
Yao, Z ., Kane, C. L. and Dekker, C., Phys. Rev. Lett. 84, 2941, (2000).CrossRefGoogle Scholar
Kaasbjerg, K., Thygesen, K. S. and Jacobsen, K. W., Phys. Rev. B, 85, 115317 (2012)CrossRefGoogle Scholar
Zeng, H. L., Dai, J. F., Yao, W., Xiao, D. and Cui, X. D. Nat. Nanotechnol. 7, 490 (2012).CrossRefGoogle Scholar
Berkdemir, A., Gutiérrez, H. R., Botello-Méndez, A. R., Perea-López, N., Elías, A. L., Chia, C. I., Wang, B., Crespi, V. H., Lopez-Uria, F., Charlier, J. C., Terrones, H, Terrones, M., Scientific Reports, 3, 1755 (2013).CrossRefGoogle Scholar
Qiao, S., Yang, H., Bai, Z., Peng, G., Zhang, X., ICMMCCE, 141, 1408 (2017).Google Scholar
Li, H, Zhang, Q., Yap., C.C., Tay, B. K., Edwin, T. H., Olivier, A., Baillargeat, D., Advanced Functional Materials, 22, 1385-1390 (2012).CrossRefGoogle Scholar
Chakraborty, B., Matte, H. S., Sood, A. K., Rao, C. N., Journal of Raman Spectroscopy, 44, 92-96 (2012).CrossRefGoogle Scholar
Molina-Sánchez, A., and Wirtz, L., Phys. Rev. B, 84 (15) 155413 (2011).CrossRefGoogle Scholar
Zi, J., Büscher, H., Falter, C., Ludwig, W., Zhang, K., Xie, X., Appl. Phys. Lett., 69, 200 (1996).CrossRefGoogle Scholar
Viera, G., Huet, S., Boufendi, L., J. Appl. Phys., 90, 4175 (2001),CrossRefGoogle Scholar
Kumar, R., Sahu, G., Saxena, S. K., Rai, H. M., Sagdeo, P. R., Silicon, 6, 117-121 (2014).CrossRefGoogle Scholar
Arora, A. K., Rajalakshmi, M., Ravindran, T. R., Sivasubramanian, V., Journal of Raman Spectroscopy, 38, 604-617 (2007)CrossRefGoogle Scholar
Adu, K. W., Gutiérrez, H. R., Kim, U. J., Sumanasekera, G. U., Eklund, P. C. Nano Letters, 5, 409-414 (2005).CrossRefGoogle Scholar
Richter, H., Wang, Z., Ley, L., Solid State Commun . 39, 625, (1981).CrossRefGoogle Scholar
Campbell, I. and Fauchet, P., Solid State Commun, 58, 739 (1986).CrossRefGoogle Scholar
Fang, L., Williams, T., Adu, K. W., Terrones, M., MRS Advances, 3, 339-344 (2018).CrossRefGoogle Scholar
Eklund, P. C., Subbaswamy, K. R., Physical Review B, 20, 5157-5161. (1979).CrossRefGoogle Scholar
Kumar, R. Indian Journal of Physics, 87(1), 49-52 (2012).CrossRefGoogle Scholar
Yoon, D., Jeong, D., Lee, H, Saito, R., Son, Y., Lee, H. C., Cheong, H., Carbon, 61, 373-378 (2013).CrossRefGoogle Scholar
Hasdeo, E. H., Nugraha, A. R., Dresselhaus, M. S., Saito, R., Physical Review B, 90, 245140 (2014).CrossRefGoogle Scholar
Balkanski, M., Wallis, R. F., Haro, E., Physical Review B, 28, 1928-1934 (1983).CrossRefGoogle Scholar
Adu, K, Gutierrez, H. R., J Kim, U., Eklund, P. C., Phys. Rev. B, 73, 115333 (2006).CrossRefGoogle Scholar