Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T20:41:59.358Z Has data issue: false hasContentIssue false

Transition from ductile to brittle failure of sodium silicate glasses: a numerical study

Published online by Cambridge University Press:  29 February 2016

Gergely Molnár*
Affiliation:
École de Mines de Saint-Étienne, Centre SMS, Laboratoire Georges Friedel, CNRS-UMR5307, 158 Cours Fauriel, 42023, Saint- Étienne, France.
Patrick Ganster
Affiliation:
École de Mines de Saint-Étienne, Centre SMS, Laboratoire Georges Friedel, CNRS-UMR5307, 158 Cours Fauriel, 42023, Saint- Étienne, France.
Anne Tanguy
Affiliation:
Laboratoire de Mécanique des Contacts et des Structures, Institut National des Sciences Appliquées de Lyon 18-20, rue des Sciences, 69621, Villeurbanne Cedex, France.
János Török
Affiliation:
Department of Theoretical Physics, Budapest University of Technology and Economics, Budapest H-1111, Hungary.
Guillaume Kermouche
Affiliation:
École de Mines de Saint-Étienne, Centre SMS, Laboratoire Georges Friedel, CNRS-UMR5307, 158 Cours Fauriel, 42023, Saint- Étienne, France.
Get access

Abstract

Using molecular statics calculations, sodium silicate glasses are expanded in an isotropic manner to analyze the composition dependence of the mechanical response.

Increasing the amount of sodium makes the systems more ductile. The tensile strength is reduced and the final load bearing strain limit is increased.

Hydrostatic strain hardening appears in the ductile samples. To explain this phenomena, the density is coarse-grained to identify microscopic defects. In samples containing a significant amount of sodium, a large amount of nano-voids appear before reaching the maximum load bearing capacity. In high sodium content silicates these cracks may cause the hardening observed in the pressure results.

In samples with low sodium content, the failure is abrupt and only a large crack is observed. Increasing the amount of long term but weaker Na-O interactions, instead of the short range Si-O ones could explain the observed transition.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brückner, R., Journal of Non-Crystalline Solids 5, 123175 (1970).Google Scholar
Hermansen, C., Matsuoka, J., Yoshida, S., Yamazaki, H., Kato, Y. and Yue, Y., Journal of Non-Crystalline Solids 364, 4043 (2013).Google Scholar
Muralidharan, K, Simmons, J. H., Deymier, P. A. and Runge, K., Journal of Non-Crystalline Solids 351, 15321542 (2005).Google Scholar
Rountree, C. L., Prades, S., Bonamy, D., Bouchaud, E., Kalia, R. and Guillot, C., Journal of Alloys and Compounds 434435, 60–63 (2007).Google Scholar
Nomura, K., Chen, Y.-C., Weiqiang, W., Kalia, R. K., Nakano, A., Vashishta, P. and Yang, L. H., J. Phys. D: Appl. Phys. 42, 214011 (2009).Google Scholar
Chen, Y.-C., Nomura, K., Kalia, R. K., Nakano, A. and Vashishta, P., Physical Review Letters 103, 035501 (2009).Google Scholar
Gross, T. M. and Tomozawa, M., Journal of Applied Physics 104, 063529 (2008).Google Scholar
van Beest, B. W. H., Kramer, G. J., and van Santen, R. A., Physical Review Letters 64, 1955 (1990).Google Scholar
Yuan, X. and Cormack, A. N., Journal of Non-Crystalline Solids 283, 69 (2001).CrossRefGoogle Scholar
Mantisi, B., Tanguy, A., Kermouche, G., and Barthel, E., The European Physical Journal B, 85 (2012),Google Scholar
Plimpton, S., Journal of Computational Physics 117, 1 (1995).Google Scholar
Fábián, M., Jóvári, P., Sváb, E., Mészáros, G., Proen, T. and Veress, E., Journal of Physics: Condensed Matter 824 19, 335209 (2007).Google Scholar
Emerson, J. F., Stallworth, P. E. and Bray, P. J., Journal of Non-Crystalline Solids 113, 830 (1989).Google Scholar
Zhao, Q., Guerette, M., Scannell, G. and Huang, L., Journal of Non-Crystalline Solids 358, 3418 (2012).Google Scholar
Theodorouand, D. and Suter, U. W., Macromolecules 19, 139 (1986).Google Scholar
Spaepen, F., Acta Metallurgica 25, 407 (1977).CrossRefGoogle Scholar
Argon, A. S., Acta Metallurgica 27, 47 (1979).CrossRefGoogle Scholar
Theodorouand, D. and Suter, U. W., Macromolecules 19, 139 (1986).Google Scholar