Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T16:01:02.739Z Has data issue: false hasContentIssue false

Thermoelectric properties of hot pressed CZTS micro spheres synthesized by microwave method

Published online by Cambridge University Press:  13 February 2018

Sarita Devi Sharma
Affiliation:
University School of Basic & Applied Sciences, GGS Indraprastha University, New Delhi, India
Sonnathi Neeleshwar*
Affiliation:
University School of Basic & Applied Sciences, GGS Indraprastha University, New Delhi, India
*
*email: sn@ipu.ac.in
Get access

Abstract

Microwave synthesis of Copper Zinc Tin Sulphide (CZTS) sphere like particles has been demonstrated. The structural and morphological properties of CZTS particles are characterized by XRD, SEM and Raman spectroscopy and subsequently thermoelectric properties are investigated. XRD results of prepared powder sample matches well with tetragonal crystal structure of CZTS bulk. No other impurity phase has been detected from the XRD analysis. Raman spectrum further confirms the formation of single phase CZTS with characteristics peak for CZTS at 334.1 cm-1. SEM studies reveal that the CZTS particles are spherical in shape with uniform sizes of ∼ 250-350 nm. Hot pressed CZTS system shows a power factor ∼21 µW/mK2 and ZT∼ 0.024 at 623 K. Significant enhancement in the Figure of merit for CZTS system is observed in comparison to reported nanostructures of the same system may be due to increased electrical conductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shakouri, A., Annu. Rev. Mater. Res. 41, 399 (2011).Google Scholar
Chen, Z.G, Han, G., Yang, L., Cheng, L., and Zou, J., Progress in Natural Science: Materials International 22(6), 535 (2012).CrossRefGoogle Scholar
Tritt, T. M., Annu. Rev. Mater. Res. 41, 433 (2011).CrossRefGoogle Scholar
Amatya, R. and Ram, R., J. Electron. Mater 41(6), 1011 (2012).Google Scholar
Qiu, P., Shi, X. and Chen, L., Energy Storage Materials 3, 85 (2016).CrossRefGoogle Scholar
Wang, B., Xiang, H., Nakayama, T., Zhou, J., and Li, B., Phys. Rev. B. 95(3), 035201 (2017).Google Scholar
Skelton, J. M., Jackson, A. J., Dimitrievska, M., Wallace, S. K., and Walsh, A., APL Materials 3(4), 041102 (2015).Google Scholar
Ibanez, M., Zamani, R., LaLonde, A., Cadavid, D., Li, W., Shavel, A., Arbiol, J., Morante, J. R., Gorsse, S., Synder, G.J. and Cabot, A., J. Am. Chem. Soc. 134, 4060 (2012).Google Scholar
Liu, M. L., Huang, F. Q., Chen, L. D. and Chen, I. W., APL 94, 202103 (2009).Google Scholar
Yang, H., Jauregui, L. A., Zhang, G., Chen, Y. P., and Wu, Y.. Nano letters 12, 540 (2012).CrossRefGoogle Scholar
Chen, X., Zhou, J., Goodenough, J. B. and Shi, L., J. Mater. Chem. C 3, 10500 (2015).Google Scholar
Shin, S. W., Han, J. H., Park, C. Y., Moholkar, A.V., Lee, J. Y., and Kim, J. H., J. Alloys. Compd. 516, 96 (2012).Google Scholar
Kush, P., Ujjain, S. K., Mehra, N. C., Jha, P., Sharma, R. K. and Deka, S., ChemPhysChem 14, 2793 (2013).Google Scholar
Tao, J., Liu, J., He, J., Zhang, K., Jiang, J., Sun, L., Yang, P. and Chu, J., RSC Adv. 4, 23977 (2014)CrossRefGoogle Scholar
Valakh, M. Y., Dzhagan, V.M., Babichuk, I. S., Fontane, X., Rodriquez, A. P. and Schorr, S., JETP letters 98(5), 255 (2013).Google Scholar
Schurr, R., Hölzing, A., Jost, S., Hock, R., Voβ, T., Schulze, J., Kirbs, A., Ennaoui, A., Steiner, M. L., Weber, A., Kötschau, I. and Schock, H.W., Thin Solid Films 517, 2465 (2009).Google Scholar
Jiang, Q., Yan, H., Khaliq, J., Shen, Y., Simpson, K. and Reece, M. J., J. Mater. Chem. A 2, 9486 (2014).CrossRefGoogle Scholar
Meng, Q. L., Kong, S., Huang, Z., Zhu, Y., Liu, H. C., Lu, X., Jiang, P. and Bao, X., J. Mater. Chem. A 4, 12624 (2016).CrossRefGoogle Scholar
Flynn, B., Wang, W., Chang, C., and Herman, G. S., Phys. Status Solidi A 209(11), 2186 (2012).CrossRefGoogle Scholar
Shavel, A., Arbiol, J., and Cabot, A., J. Am. Chem. Soc. 132, 4514 (2010).Google Scholar
Ahmad, R., Brandl, M., Distaso, M., Herre, P., Spiecker, E., Hock, R. and Peukert, W., CrystEngComm 17, 6972 (2015).CrossRefGoogle Scholar
Chen, S., Yang, J. H., Gong, X. G., Walsh, A. and Wei, S. H., Phys. Rev. B 81, 245204 (2010).Google Scholar
Fan, F.J., Wang, Y.X., Liu, X. J., Wu, L., and Yu, S. H., Adv. Mater. 24(46), 6158 (2012).Google Scholar
Zhang, L., Karthikeyan, S., Sibakoti, M. J., Campbell, S. A., MRS Online Proceedings Library Archive 1738, (2015).Google Scholar
Shavel, A., Cadavid, D., Ibanez, M., Carrete, A., and Cabot, A., J. Am. Chem.Soc. 134, 1438 (2012).Google Scholar
He, Y., Day, T., Zhang, T., Liu, H., Shi, X., Chen, L., and Snyder, G. J., Adv. Mater 26(23), 3974 (2014).CrossRefGoogle Scholar
Zheng, X., Liu, Y., Du, Y., Sun, Y., Li, J., Zhang, R., Li, Q., Chen, P., Zhao, G., Fang, Y., Dai, N., J. Alloys. Compd. 738, 484 (2018).Google Scholar
Kumar, S., Ansari, M. Z. and Khare, N., thin solid films 645, 300 (2018).Google Scholar
Liu, Y., Zhou, Y., Lan, J., Zeng, C., Zheng, Y., Zhan, B., Zhang, B., Lin, Y., Nan, C. W., J. Alloys. Compd. 662, 320 (2016).Google Scholar
Ji, S., Shi, T., Qiu, X., Zhang, J., Xu, G., Chen, C., Jiang, Z. and Ye, C., Scientific Reports 3, 2733 (2013).Google Scholar
Wang, Y., Huang, Y., Lee, A.Y.S., Wang, C. F., Gong, H., J. Alloys. Compd. 539, 237 (2012).Google Scholar