Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T12:56:40.327Z Has data issue: false hasContentIssue false

The role of zinc metal salts on size, morphology and photocatalytic activity of ZnO

Published online by Cambridge University Press:  20 February 2018

S.S. Nkabinde
Affiliation:
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, 2050, Republic of South Africa
X. Mathebula
Affiliation:
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, 2050, Republic of South Africa
Z. Tetana
Affiliation:
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, 2050, Republic of South Africa
N. Moloto*
Affiliation:
Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, Private Bag 3, Wits, 2050, Republic of South Africa
*
*Corresponding author email address: Nosipho.Moloto@wits.ac.za
Get access

Abstract

Herein, we report on the syntheses of ZnO nanoparticles using different precursors Zn(NO3)2•6H2O, Zn(CH3COO)2•2H2O, ZnCl2, and ZnSO4.H2O by a microwave assisted method. The different precursors resulted in different structural, optical and photocatalytic degradation of Rhodamine B dye. The nanoparticles resulted in rod-like and pseudo-spherical morphologies when the ZnO2•6H2O, (Zn(CH3COO)2•2H2O and ZnCl2 precursors were used, with the proportion of the spherical morphology in each photocatalyst varying in the order Zn(NO3)2•6H2O > Zn(CH3COO)2•2H2O > ZnCl2. The ZnSO4.H2O precursor yielded trapezium shaped particles that were agglomerated through oriented attachment. For photocatalytic degradation studies, the fastest degradation was achieved using the SNO3- photocatalyst, which degraded the dye in a period of 120 min, followed by SCH3COO- at 150 min, SCl- at 180 min and SSO42- managing to degrade only 15 % of the dye after 240 min. The difference in the activity was attributed to surface area differences, which followed the order SNO3- > SCH3COO- >SCl- > SSO42-, with the photocatalyst that had the highest surface area showing high degradation rates. The high degradation rate observed for the SNO3- photocatalyst was also attributed to the presence of a large number of spherical particles thereby having a larger proportion of the high energy [0001] and [000-1] faces known to be highly active.

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Moezzi, A., Mcdonagh, A.M., and Cortie, M.B, Chemical Engineering Journal, 185-186, (2012) 122CrossRefGoogle Scholar
Kolodziejczak-Radzimska, A., and Jesionowski, T., Materials, 7(4), (2014), 28332881CrossRefGoogle Scholar
Lee, K.M., Lai, C.W., Ngai, K.S., and Juan, J.C., Water Research, 88, (2016) 428448CrossRefGoogle Scholar
Yusoff, N., Ho, L., Ong, S., Wong, Y., and Khalik, W., Desalination and Water Chemistry Treatment, 57, (2016) 27Google Scholar
Baruah, S., Jaisai, M, Imani, R., Nazhad, M.M. and Dutta, J., Science and Technology of Advanced Materials, 10, (2010) 5Google Scholar
Sutradhar, P., and Saha, M., Journal of Experimental Nanoscience, 11, (2015) 314327CrossRefGoogle Scholar
Behnajady, M.A., Modirshahla, N., Shorki, M., Zeininezhad, A., and Zamani, H.A., Journal of Environmental Science and Health, Part A, 44, (2009)7CrossRefGoogle Scholar
Sun, T., Qiu, J., and Liang, C., Journal of Physical Chemistry, 112, (2008) 715721Google Scholar
Farbon, M., and Jafarpoor, E., Material letters, 85, (2012) 4749CrossRefGoogle Scholar
Phan, C.M. and Nguyen, H. M., Journal of Physical Chemistry A, 121, (2017) 32133219CrossRefGoogle Scholar
Yu, N., Dong, B., Yu, W.W., Hu, B., Zhang, Y. And Cong, Y., Applied Surface Science, 258, (2012) 57295732CrossRefGoogle Scholar
Przybyszewska, M. and Zaborski, M., Polymer Letters, 3, (2009) 542552CrossRefGoogle Scholar
Mayekar, J., Dhar, V. and Radha, S., International Journal of Research in Engineering and Technology, 3, (2014) 03Google Scholar
Wang, L. and Muhammed, M., Journal of Material Chemistry, 9, (1999) 28712878CrossRefGoogle Scholar
Garcia, S.P., and Semancik, S., Chemistry of Materials, 19, (2007) 40164022CrossRefGoogle Scholar
Kumar, S.S, Venkateswarlu, P., Rao, V.R. and Rao, G.N, International Nano Letters, 3, (2013) 30CrossRefGoogle Scholar
Rusu, D.I., Rusu, G.G., and Luca, D., Acta Physica Polonica A, 119, (2011) 850856CrossRefGoogle Scholar
He, R., and Tsuzuki, T., Journal of American Ceramic Society, 93, (2010) 22812285CrossRefGoogle Scholar
Sheikhnejad-Bishe, O., International Journal of Electrochemical Science, 9, (2014) 30683077Google Scholar
Shukla, N., and Roy, A.G, Materials Letters, 60, (2006) 995998CrossRefGoogle Scholar
Laudise, R. A., and Ballman, A. A., Journal of Physical Chemistry, 64, (1960) 688691CrossRefGoogle Scholar
Lee, K. M., Lai, C.W., Ngai, K.S., and Juan, J.C., Water Research, 88, (2016) 428448CrossRefGoogle Scholar
Søndergaard, M., Bøjesen, E. D., Christensen, M., and Iversen, B.B., Crystal Growth and Design, 11, (2011) 40274033CrossRefGoogle Scholar
Pudukudy, M., and Yaakob, Z., Solid State Science, 30, (2014) 7888CrossRefGoogle Scholar
Singh, O., Kohli, N., and Singh, R.C., Sensors and Actuators B: Chemical, 178, (2013) 149154CrossRefGoogle Scholar
Srikanth, C.K., and Jeevanandam, P., Journal of Alloys and Compounds, 486, (2009) 677684CrossRefGoogle Scholar
Tang, C.W., Modern Research in Catalysis, 2, (2013) 1924CrossRefGoogle Scholar
Pourrahimi, A. M., Liu, D., Pallon, L. K. H., Andersson, R. L., Abad, A. M., Lagar´on, J. M., Hedenqvist, M. S., Str¨om, V., Geddeaand, U. W., and Olsson, R. T., RSC Advances, 4, (2014) 35568CrossRefGoogle Scholar
Lima, M.K., Fernandes, D.M., Silva, M.F., Baesso, M.L., Neto, A.M., de Morais, G.R., Nakamura, C.V., Caleara, A.O., Hechenleiter, A.A.W., and Pineda, E.A.G., Journal of Sol-Gel Technology, 72, (2014) 301309CrossRefGoogle Scholar
Hoffman, M., Martin, S., Choi, W., and Bahnemann, D., Chemical Review, 95, (1995), 6996CrossRefGoogle Scholar
Moore, J.M., Louder, R., and Thompson, C.V., Coatings, 4, (2014) 651669CrossRefGoogle Scholar
Manzoor, U., Islam, M., Tabassam, L., and Rahman, S.U., Physica E, 41, (2009) 16691672CrossRefGoogle Scholar
Konstantinou, I.K., and Albanis, T.A., Applied Catalysis B: Environmental, 49 (1), (2004) 114CrossRefGoogle Scholar
Ajmal, A., Majeed, I., Malik, R.N., Idriss, H., and Nadeem, M.A., RSC Advances, 4, (2014) 37003CrossRefGoogle Scholar
Mclaren, A., Valdes-Solis, T., Li, G., Tsang, S.C., Journal of the American Chemical Society, 35, (2009) 1254012541CrossRefGoogle Scholar