Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T19:01:57.887Z Has data issue: false hasContentIssue false

Production and characterization of chitosan and glycerol-chitosan films

Published online by Cambridge University Press:  08 October 2018

María E. Castelló*
Affiliation:
UIDET Ingeniería Aplicada en Mecánica y Electromecánica (IAME), Facultad de Ingeniería, Universidad Nacional de La Plata, 48 y 117, La Plata. Argentina
Pablo S. Anbinder
Affiliation:
Instituto de Física de Materiales Tandil – IFIMAT (UNCPBA) and CIFICEN (UNCPBA-CICPBA-CONICET), Pinto 399, (7000) Tandil, Argentina
Javier I. Amalvy
Affiliation:
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA (UNLP – CONICET CCT La Plata), Diag. 113 y 64 (B1904DPI). La Plata, Argentina Centro de Investigación y Desarrollo en Ciencia y Tecnología de Materiales (CITEMA) – (UTN – CICPBA). Av. 60 y 124, 1923 Berisso, Argentina
Pablo J. Peruzzo
Affiliation:
Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas INIFTA (UNLP – CONICET CCT La Plata), Diag. 113 y 64 (B1904DPI). La Plata, Argentina
Get access

Abstract

This work presents the study of the isolation of chitin from residues of the Patagonian shrimp (Pleoticus muelleri), and its subsequent conversion to chitosan under different reaction conditions. The obtained products were characterized by evaluating their molecular weight (Mw) and degree of deacetylation (DD). In addition, chitosan- glycerol films were prepared (5, 10 and 20% w/w of plasticizer content), using a neutralization process during the unmolding step. The films were characterized by infrared (FTIR) and UV-Visible spectroscopy and scanning electron microscopy (SEM). In addition, its behavior against water (contact angle and water sorption) and mechanical properties were also studied. It was observed that 72 hours of reaction time at 120 °C were necessary to obtain a chitosan sample with the desirable solubility properties from the chitin extracted from Pleoticus muelleri shells. The chitosan-glycerol films turned out to be systems of high transparency and their properties depended on the plasticizer content, obtaining homogeneous systems for concentrations up to 10% w/w. In addition, the films were found to be more hydrophilic than the reference material, with smaller contact angle and greater water absorption values, obtaining more flexible films in view of their mechanical properties.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Imre, B., Pukánszky, B. (2015). From natural resources to functional polymeric biomaterials. European Polymer Journal 68, 481-487.CrossRefGoogle Scholar
Desroches, M., Escouvois, M., Auvergne, R., Caillol, S., Boutevin, B. (2012). From vegetable oils to polyurethanes: synthetic routes to polyols and main industrial products. Polymer Reviews, 52, 3879.CrossRefGoogle Scholar
Pereda, M., Moreira, M.R., Roura, S.L., Marcovich, N., Aranguren, M.L. (2014) Ciencia e Investigación, 64: 35.Google Scholar
Sorrentino, A., Gorrasi, G., Vittoria, V. (2007) Trends in Food Science & Technology, 18: 84.CrossRefGoogle Scholar
Handbook of Plasticizers, 2nd Edition, Editor: Wypych, G.. ChemTec Publishing, Toronto 2012.Google Scholar
Ziani, K., Oses, J., Coma, V., Maté, J.I. (2008) LWR – Food Science and Technology, 41: 2159.Google Scholar
Cissé, M. Montet, D., Loiseau, G, Marie-Noëlle Ducamp-Collin., J. (2012) Polym Environ, 20: 830.CrossRefGoogle Scholar
Epure, V., Griffon, M., Pollet, E., Averous, L. (2011) Carbohydrate Polymers, 83:947.CrossRefGoogle Scholar
Pillai, C.K.S., Paul, W., Sharma, C.P. (2009) Progress in Polymer Science, 34: 641.CrossRefGoogle Scholar
Youssef, A.M., Abou-Yousef, H., El-Sayed, S.M, Kamel, S. (2015). Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films. International Journal of Biological Macromolecules, 76, 2532.CrossRefGoogle ScholarPubMed
Percot, A., Viton, C., Domard, A. (2003) Biomacromolecules, 4:1380.CrossRefGoogle Scholar
Parada, L., Crespín, G., Miranda, R., Katime, I. (2004) Revista Iberoamericana de Polímeros, 5:1.Google Scholar
Wang, W., Bo, S. Q., Li, S.Q., Qin, W. (1991) International Journal of Biological Macromolecules, 13: 281.CrossRefGoogle Scholar
Brugnerotto, J., Desbriéres, J., Heux, L., Mazeau, K., Rinaudo, M. (2001) Macromolecular Symposia, 168: 1.3.0.CO;2-W>CrossRefGoogle Scholar
Rivero, S., Damonte, L., García, M.A., Pinotti, A. (2016) Food Biophysics. Springer Science+Business Media New York.Google Scholar
Acta Chemica Scandinavica 1991, 45:1018.CrossRefGoogle Scholar
Berghoff, C. F. (2011). Trabajo de Tesis Doctoral, FCE-UNLP.Google Scholar
Lagaron, J. M., Fernandez-Saiz, P., Ocio, M.J. (2007) Journal of Agricultural and Food Chemistry, 55:2554.CrossRefGoogle Scholar
Khan, A., Khan, R.A., Salmieri, S, Le Tien, C, Riedl, B, Bouchard, J., Chauve, G, Tan, V, Kamal, M.R., Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforcedchitosan based nanocomposite films. Carbohydrate Polymers, 90: 16011608.CrossRefGoogle ScholarPubMed
Dehnad, D., Emam-Djomeh, Z., Mirzaei, H., Jafari, S-M., Dadashi, S. (2014). Optimization of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydrate Polymers, 105: 222228.CrossRefGoogle ScholarPubMed