Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T06:35:33.467Z Has data issue: false hasContentIssue false

Low Energy Ion Implantation and Annealing of Au/Ni/Ti Contacts to n-SiC

Published online by Cambridge University Press:  24 April 2017

Neelu Shrestha
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Martyn H. Kibel
Affiliation:
Centre for Materials and Surface Science, Department of Chemistry and Physics, La Trobe University, Melbourne, Victoria, Australia.
Patrick W Leech*
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Anthony S Holland
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Geoffrey K Reeves
Affiliation:
School of Engineering, RMIT University, Melbourne, Victoria, 3001, Australia
Mark C Ridgway
Affiliation:
Electronic Materials Engineering, Australian National University, Canberra, ACT, Australia.
Phillip Tanner
Affiliation:
Griffith University, Queensland Microtechnology Facility, Brisbane, Australia.
Get access

Abstract

The electrical characteristics of Au/Ni/Ti/ n-SiC contacts have been examined as a function of implant dose (1013-1014 ions/cm2) at 5 KeV and temperature of annealing (750-1000 °C). Measurements of specific contact resistance, ρc, were approximately constant at lower implant doses until increasing at 1 x 1015 ions/cm2 for both C and P ions. Annealing at a temperature of 1000 °C has reduced the value of ρc by an order of magnitude to ∼1 x 10-6 Ω.cm2 at implant doses of 1013-1014 ions/cm2. Auger Electron Spectroscopy (AES) has shown that annealing at 1000 °C resulted in a strong indiffusion of the metallization layers at the interface.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Wang, Z., Liu, W., Wang, C., J. Electron. Mater. 45(1), 267 (2015).Google Scholar
Zhang, Z., Teng, J., Yuan, W.X., Zhang, F.F., Chen, G.H., Appl. Surf. Sci., 255, 6939 (2009).Google Scholar
Basak, D., Mahanty, S., Mater. Sci.Eng. B98, 177 (2003).Google Scholar
Linchao, H., Huajun, S., Kean, L., Yiyu, W., Yidan, T., Yun, B., Hengyu, X., Yudong, W., Xinyu, L., J. Semicond. 35(7), 07203–1 (2014).Google Scholar
Lee, J.W., Angadi, B., Park, H.C., Park, D.H., Choi, J.W., Choi, W.K., Kim, T.W., J. Electrochem. Soc. 154(10), H849 (2007).Google Scholar
Touati, F., Takemasa, K., Saji, M., IEEE Trans. Electron Dev. 46(3), 444, (1999).Google Scholar
Grodzicki, M., Chrzanowski, J., Mazur, P., Zuber, S., Ciszewski, A., Opt. Appl. 39(4), 765 (2009).Google Scholar
Leech, P.W., Holland, A.S., Reeves, G.K., Pan, Y., Ridgway, M.C., Tanner, P., Mater. Lett. 66, 39 (2016).Google Scholar
Liu, L. F., Li, C.H., Pisano, A.P., Carraro, C., Maboudia, R., JVSTA A28, 1259 (2010).Google Scholar
Wang, L., Dimitrijev, S., Han, J., Iocopi, F., Hold, L., Tanner, P., Harrison, H.B., Thin Solid Films 519 6443 (2011).Google Scholar
Pan, Y., Reeves, G. K., Leech, P. W., Holland, A. S., IEEE Trans. Electron Dev. 60, 1202, (2013).Google Scholar
Takeda, T., Tomita, A., Matsui, T., Isshiki, T., Mater. Sci. Forum 778-780, 350 (2014).Google Scholar
Song, X., Biscarrat, J., Michaud, J-F., Cayrel, F., Zielinksi, M., Chassagne, T., Portail, M., Collard, E, Alquier, D., Nucl. Instr. Meth. Phys. Res. B269, 2020 (2011).Google Scholar