Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T13:04:26.180Z Has data issue: false hasContentIssue false

Green synthesis of chitosan capped silver nanoparticles and their antimicrobial activity

Published online by Cambridge University Press:  17 April 2018

Zondi Nate
Affiliation:
Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900, South Africa.
Makwena Justice Moloto*
Affiliation:
Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900, South Africa.
Pierre Kalenga Mubiayi
Affiliation:
Department of Chemistry, Vaal University of Technology, Private Bag X021, Vanderbijlpark, 1900, South Africa.
Precious Nokwethemba Sibiya
Affiliation:
Department of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X01 Pietermaritzburg, 3209, South Africa,
*
*Corresponding author. Email: makwenam@vut.ac.za and Tel: +27(0)16 9506689
Get access

Abstract

Chitosan is a polymeric compound with functional groups which enable surface binding to nanoparticles and antibacterial activity. The antimicrobial activity was studied using silver nanoparticles with varied concentrations of chitosan. The nanoparticles were synthesized through a simple and environmentally friendly method at room temperature. Spherical particles with average sizes between 2 and 6 nm were obtained and their crystallinity showed a face-centered cubic phase. The evidence of chitosan presence on the nanoparticle surface was confirmed by the characteristic diffraction peak of chitosan and by FTIR spectra where the bonding of amine group could be depicted. The chitosan-capped silver nanoparticles showed good antibacterial and antifungal activities with MIC values between 0.20 and 1.5 mg.mL-1 compared to those obtained from most of references (up to 6.25 mg.mL-1) on the selected gram-positive (Staphylococcus aureus, Enterococcus faecalis), gram-negative (Klebsiella pneumoniae, Pseudomonas aeruginosa ) bacteria and fungi (Candida albicans, Cryptococcus neoformans).

Type
Articles
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Mody, V. V., Siwale, R., Singh, A., Mody, H. R., 2010, Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2, 282289.CrossRefGoogle ScholarPubMed
Cuenya, B. R., 2010, Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition and oxidation state effects, Thin Solid Films, 518, 31273150.CrossRefGoogle Scholar
Manikadan, A., 2015, Green synthesis of copper-chitosan nanoparticles and study of its antimicrobial activity. J. NanoMed. & Nanotech., 2015, 16.Google Scholar
Vines, F., Gomes, J. R., Illas, F., 2014, Understanding the reactivity of metallic nanoparticles beyond the extended surface model for catalysis, Chem. Soc. Rev., 43, 49224939.CrossRefGoogle ScholarPubMed
Li, L. and Zhu, Y., 2006, High chemical reactivity of silver nanoparticles toward hydrochloric acid. J. Coll. Interfac. Sci., 303, 415418.CrossRefGoogle ScholarPubMed
Suganya, U., Govindaraju, K.S., Ganesh Kumar, V. Stalin Dhas, T. Karthick, V. Singaravelu, G., 2015, Size controlled biogenic silver nanoparticles as antibacterial agent against isolates from HIV infected patients, Spectrochimica Acta Part A: Mol. and Biomol. Spec., 144, 266272.CrossRefGoogle ScholarPubMed
Dizai, S. M., Lotfipou, F., Barzegar-Jalali, M., Zarrintan, M. H., Adibkia, K., 2014, Antimicrobial activity of metals and metal oxide nanoparticles. Mater. Sci. and Eng. C, 44, 278284.Google Scholar
Salem, W., Leiner, D. R., Zingl, F. G., Schratter, G., Prassl, R, Goessler, W, Reidl, J., Schild, S., 2015, Antibacterial activity of silver and zinc nanoparticles against Vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbio., 305, 8595.CrossRefGoogle ScholarPubMed
Abou El-Nour, K. M., Eftaiha, A., Al-Warthan, A., Ammar, R. A., 2010, Synthesis and applications of silver nanoparticles, Arab. J. Chem., 3, 135140.CrossRefGoogle Scholar
Iravani, S., Korbekadi, H., Mirmohammadi, S. V., Zolfaghari, B., 2014, Synthesis of silver nanoparticles: chemical, physical and biological methods, Res. Pharm. Sci., 9, 385406.Google ScholarPubMed
Rashid, M. I., Mujawar, L. H., Mujallid, M. I., Shahid, M., Rehan, Z. A., Khan, M. K. I. and Ismail, I. M. I. 2017. Potent bactericidal activity of silver nanoparticles synthesized from Cassia fistula fruit, Microb Pathog, 107, 354360.CrossRefGoogle ScholarPubMed
Jalali, S. A. H. and Allafchian, A. R. 2016, Assessment of antibacterial properties of novel silver nanocomposite. Journal of the Taiwan Institute of Chemical Engineers, 59, 506513.CrossRefGoogle Scholar
Tsuji, T, Iryo, K, Watanabe, N, Tsuji, M. 2002, Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size, Appl Surf Sci. 202, 8085.CrossRefGoogle Scholar
Jung, J, Oh, H, Noh, H, Ji, J, Kim, S. 2006, Metal nanoparticle generation using a small ceramic heater with a local heating area, J Aerosol Sci. 37, 16621670.CrossRefGoogle Scholar
Mafune, F, Kohno, J, Takeda, Y, Kondow, T, Sawabe, H. 2000, Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation, J Phys Chem B. 104, 83338337.CrossRefGoogle Scholar
Kruis, F, Fissan, H and Rellinghaus, B. 2000, Sintering and evaporation characteristics of gas-phase synthesis of size-selected PbS nanoparticles, Mater Sci Eng B., 69, 329334.CrossRefGoogle Scholar
Jung, J., Oh, H., Noh, H., Ji, J., Kim, S., 2006, Metal nanoparticle generation using a small ceramic heater with a local heating area. J. Aerosol Sci., 37, 16621670.CrossRefGoogle Scholar
Sharma, V. K., Yingard, R. A., Lin, Y., 2009, Silver nanoparticles: green synthesis and their antimicrobial activities. Advance in colloid and interface science. 145, 8396CrossRefGoogle ScholarPubMed
Li, Y., Gan, W., Zhou, J., Lu, Z., Yang, C., Ge, T., 2015, Hydrothermal synthesis of silver nanoparticles in Arabic gum aqueous solutions, 25, Trans. Nonferrous Met. Soc. China, 25, 20812086.CrossRefGoogle Scholar
Praveenkumar, K., Rabinal, M. K., Kalasad, M. N., Sankarappa, T., Bedre, M. D., 2014, Chitosan capped silver nanoparticles used as pressure sensors, J. Appl. Phys., 5, 4351.Google Scholar
Mat Zain, N., Stapley, A. G. F., Shama, G., 2014, Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydrate polymers., 112, 195202.CrossRefGoogle Scholar
Sibiya, P. N., Moloto, M. J., 2014, Effect of concentration and pH on the size and shape of starch capped silver selenide nanoparticles. Chalcogenide Lett., 11, 577588.Google Scholar
Kumirska, J., Weinhold, M., Thoming, J., Stepnowski, P., 2011, Biomedical activity of chitin/chitosan based materials-influence of physicochemical properties apart from molecular weight and degree of N-Acetylation, Polymers, 3, 18751901.CrossRefGoogle Scholar
Dutta, P. K., Dutta, S., Tripathi, V. S., 2004, Chitin and Chitosan: chemistry, properties and applications, J. Sci. Ind. Res., 63, 2031.Google Scholar
Jayakumar, R., Menon, D., Manzoor, K., Nair, S. V., Tamura, H., 2010, Biomedical applications of chitin and chitosan based nanomaterials - A short review, Carb. Pol., 82, 227232.CrossRefGoogle Scholar
Silver, L.L., 2011, Challenges of antibacterial discovery, Clin. Microbiol. Rev., 24, 71109.CrossRefGoogle ScholarPubMed
Meyer, W. G., Pavlin, J. A., Hospenthal, D., Murray, C. K., Jerke, K., Hawksworth, A., Metzgar, D., Myers, T., Walsh, D., Wu, M., Ergas, R., Chukwuma, U., Tobias, S., Klena, J., Nakhla, I., Talaat, M., Maves, R., Ellis, M., Wortmann, G., Blazes, D. L., Lindler, L., 2011, Antimicrobial resistance surveillance in the AFHSC-GEIS network. BMC public health, 11, 14712458.CrossRefGoogle ScholarPubMed
Kanungo, R., 2009, Antibiotic resistance- the modern epidemic current status and research issues, India J. Med. Microbio., 27, 386387.Google Scholar
Rossolini, G. M., Arena, F., Pecile, P., Pollini, S., 2014, Update on the antibiotic resistance crisis, Curr. Opin. Pharm., 18, 5660.CrossRefGoogle ScholarPubMed
Ventola, C. L., 2015, The Antibiotic Resistance Crisis. Part 1: Causes and Threats. Pharmacy and Therapeutics, 40, 277283.Google ScholarPubMed
Gross, M., 2013, Antibiotics in crisis. Current Biology, 23, R1063–R1063.CrossRefGoogle ScholarPubMed
Eloff, J.N., 1998, A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria, Planta Medica, 64, 711713.CrossRefGoogle Scholar
Eloff, J. N., Masoko, J., Picard, J., 2007, Resistance of animal fungal pathogens to solvents used in bioassays. S. Afr. J. Bot., 73, 667669.CrossRefGoogle Scholar
Salton, M. R., 1953, Studies of the bacterial cell wall: IV. The composition of the cell walls of some gram-positive and gram-negative bacteria, Biochimica at biophysica Acta, 10, 512523.CrossRefGoogle Scholar
Jiang, L., 2011, Comparison of disk diffusion, agar dilution and broth microdilution for antimicrobial susceptibility testing of five chitosans. MSc Dissertation at B.S, Fujian Agricultural and Forestry University, China, 4849.Google Scholar
Akmaz, S., Adjgüze, L., Yasar, E. D., Erguven, M. O., 2013, The effect of Ag content of the chitosan-silver nanoparticle composite material on the structure and antibacterial activity. Adv. Mater. Sci. Eng., 2013, 16.Google Scholar