Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-12T13:00:00.748Z Has data issue: false hasContentIssue false

Exploring stress-grown carbon nanotubes in the optical regime

Published online by Cambridge University Press:  19 April 2016

Michael S. Lowry*
Affiliation:
Naval Surface Warfare Center – Dahlgren Division, Dahlgren, VA, 22448, U.S.A.
Get access

Abstract

Carbon nanotube arrays were grown in the presence of an applied mechanical stress (30 min, 60 mN/mm2 mechanical pressure) and dispersed in aqueous solution (0.08 - 2.3 mm2/mL). Optical (450-950 nm) transmission and right angle scattering measurements were performed on these dispersions and on an analogous set of conventional (non-stressed) carbon nanotubes. Results show similar transmission behavior and different right angle scattering dependence on concentration for stress-grown and conventional carbon nanotubes. This investigation provides the first evidence of differentiation between stress-grown and conventional carbon nanotubes in the optical regime, suggesting a point of departure for future applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hart, A.J. and Slocum, A.H.. Nano Lett. 6(6), 1254 (2006).Google Scholar
Lowry, M. S., Rayms-Keller, P., Long, K. J., Santiago, F., Gehman, V. H. Jr., Wilkerson, N. L., and Boulais, K. A.. Synthetic Control Over the Structure and Symmetry of Carbon Nanotubes, presented at the FLC Mid-Atlantic Region Advanced Materials Partnership Forum, Newport News, VA, 2012. Available at: http://www.flcmidatlantic.org/events/2012/advanced-materials-partnership-forum/index.html (accessed 17 April 2012).CrossRefGoogle Scholar
Stetter, J. R. and Maclay, G. J., “Carbon Nanotubes and Sensors: A Review,” Enabling Technology for MEMS and Nanodevices, ed. Baltes, H., Brand, O., Fedder, G. K., Hierold, C., Korvink, J. G. and Tabata, O. (Wiley-VCH Verlag GmbH, 2004) Chapter 10, 357.Google Scholar
Lee, D. H., Lee, J. A., Lee, W. J., Choi, D. S., Lee, W. J., and Kim, S. O.. J. Phys Chem C. 114, 21184 (2010).Google Scholar
Bu, X., Zhou, Y., Zhang, T., Wang, Y., Zhang, Z. and He, M.. J. Solid State Chem. 216, 23 (2014).Google Scholar
in het Panhuis, M., Sainz, R., Innis, P. C., Kane-Maguire, L. A. P., Benito, A. M., Martinez, M. T., Moulton, S. E., Wallace, G. G., and Maser, W. K.. J. Phys. Chem B. 109, 22725 (2005).CrossRefGoogle Scholar
Application Note CVDAN-T0101. Synthesis of Carbon Nanotubes with an EasyTubeTM System (2013). Available at www.firstnano.com (accessed 15 July 2013).Google Scholar