Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T13:37:07.823Z Has data issue: false hasContentIssue false

Decoration of graphene films with europium oxide through the R.F. sputtering technique

Published online by Cambridge University Press:  27 December 2019

R. Rangel*
Affiliation:
División de Estudios de Posgrado, Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Z.C. 58060 Morelia, Michoacán, México
V. J. Cedeño
Affiliation:
Instituto tecnológico del valle de Morelia, Morelia, Michoacán, México
J. L. Cervantes
Affiliation:
División de Estudios de Posgrado, Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Z.C. 58060 Morelia, Michoacán, México Instituto tecnológico del valle de Morelia, Morelia, Michoacán, México
P. Bartolo-Pérez
Affiliation:
Instituto tecnológico del valle de Morelia, Morelia, Michoacán, México
J. A. Montes
Affiliation:
Departamento de Física, Matemáticas e Ingeniería, Universidad Estatal de Sonora, Lázaro Cárdenas del Río No.100, Francisco Villa, Navojoa. Sonora, México
A. Ramos-Carrazco
Affiliation:
Universidad de Sonora, Z.C. 83000, Hermosillo, Sonora, México
E. Adem
Affiliation:
Instituto de Física, UNAM. Apartado Postal 20-364, 01000,Ciudad de México, México
*
Get access

Abstract

The present work is aimed to study a comparison among synthesized graphene films, deposited on copper substrates and commercial graphene films; both decorated with Eu2O3 particles, with the purpose of promoting photoluminescence. The decoration procedure was achieved using the radio frequency sputtering (R.F. Sputtering) technique for the deposition of Eu2O3 on synthesized or commercial graphene films. The SEM obtained images, show differences in morphology when commercial and synthesized graphene films are compared. Our results indicate that the type of surface is the main factor that accounts for the europium oxide spatial distribution that ultimately leads to luminescence enhancing. The x-ray photoelectron spectroscopy (XPS) analyses, showed the trivalent oxidation state of europium and the atomic content of Europium for both; the commercial graphene film and synthesized one, where the first one presented the higher europium concentration. Analysis by Raman spectroscopy reveals that graphene films become disordered after the decoration is achieved. The main Raman bands of the commercial graphene films undergo a remarkable red shift, as a consequence of the presence of europium oxide It was observed that the interaction of Eu2O3 with the sp2 levels of graphene, improves the red photoluminescence of the samples grown on both, commercial and prepared graphene films.

Type
Articles
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

Chen, X., Zhang, L., Chen, S., Synthetic Metals. 210 95108 (2015).CrossRefGoogle Scholar
Ge, W., Lu, B., Li, W., Lu, J., Ye, Z., Vaccum. 97 914 (2013).CrossRefGoogle Scholar
Choi, H., Seo, J., Chung, S., Han, J., Benayad, H., Heo, A., Lee, J., Woo, H., Yeon, Y., Seo, D., Chung, D., Carbon. 64 315323 (2013).Google Scholar
Jin, H., Meyer, J., Roth, S., Carbon. 48 10881094 (2010).CrossRefGoogle Scholar
Sarno, M., Cirillo, C., Piscitelli, R., Ciambelli, P., J. Molecular Catal. A: Chemical. 366 303314 (2013).CrossRefGoogle Scholar
Qi, J., Ren, M., Jiao, Z., Zhou, Y., Xu, Y., Li, X., Li, W., Zheng, J., Bai, X., J. Phys. Chem. C. 117 1434814353 (2013).CrossRefGoogle Scholar
Kim, J.Y., Lee, J.B., Kim, H.J., Shin, K., Yu, Y., Oh, Y., Chemical Society. 31 14851488 (2010).Google Scholar
Cao, Y., Yang, T., Feng, J., Wu, P., Carbon. 49 15021504 (2010).CrossRefGoogle Scholar
Masuda, Y., Wada, S., Nakamura, T., Matsumura-inoue, T., J. Alloys and Compounds. 408412 1017–1021 (2006).Google Scholar
Syamchand, S.S., Sony, G., J. Luminescence. 165 190215 (2015).CrossRefGoogle Scholar
Park, B., Kim, J., Lim, J., Some, S., Park, J., J. Mater. Chem. C. 3 40304038 (2015).CrossRefGoogle Scholar
Gupta, B.K., Thanikaivelan, P., Narayanan, T.N., Song, L., Gao, W., Martí, A.A., Ajayan, P.M., Nano Letters. 11 52275233 (2011).CrossRefGoogle Scholar
Cedeño, V., Rangel, R., Cervantes-Lopez, J., Lara, J., Alvarado-Gil, J., Galvan, D., Mat. Res. Express. 4 075006 (2017).CrossRefGoogle Scholar
Singh, V., Joung, D., Zhai, L., Das, S., Progress in Materials Science. 56 11781271 (2011).CrossRefGoogle Scholar
Beji, N., Souli, M., Reghima, M., Azzaza, S., Materials Science in Semiconductor Processing. 56 2028 (2016).Google Scholar
Bellochini, S., Franzò, G., Iacona, G., Boninelli, F., Miritello, M., Priolo, F., J.Luminescence. 132 31333135 (2012).CrossRefGoogle Scholar
Vimuna, V.M., Sreedharan, R.S., Krishnan, R.R., Kavitha, V.S., Chalana, S.R., Suresh, S., Pillai, V.P.M., Mater. Today: Proceedings. 4 44174433 (2017).Google Scholar
Vlassiouk, I., Fulvio, P., Meyer, H., Lavrik, N., Dai, S., Datskos, P., Smirnov, S., Carbon. 54 5867 (2012).CrossRefGoogle Scholar
Ibrahim, A., Akhtar, S., Atieh, M., Karnik, R., Laoui, T., Carbon. 94 369377 (2015).CrossRefGoogle Scholar
Cho, S.J., Oh, E. J., Phys. Rev. B. 59 R15613R15616 (1999).CrossRefGoogle Scholar
Kumar, D., Prakash, S., Choudhary, R., Phase, R., Mater. Res. Bull. 70 392396 (2015).CrossRefGoogle Scholar
Calizo, I., Balandin, A. A., Bao, W., Miao, F., Lau, C. N., Nano Lett., vol. 7, No. 9, 2645-2649 (2007).CrossRefGoogle Scholar
Akhavan, O., Carbon. 81 158-166 (2015).CrossRefGoogle Scholar
Luo, Z., Vora, P.M., Mele, E.J., Johnson, A.T.C., Kikkawa, J.M., Luo, Z., Vora, P.M., Mele, E.J., Johnson, A.T.C.., Appl. Phys. Lett. 94 111909 (2009).CrossRefGoogle Scholar
Ferrari, A.C., Robertson, J., Phys. Rev. B, 61, 14095-14107 (2000).CrossRefGoogle Scholar
Ferrari, A.C., Basko, D.M., Nature Nanotechnology. 8 235246 (2013).CrossRefGoogle Scholar
Pimenta, M.A., Dresselhaus, G., Dresselhaus, M.S., Cançado, R., Jorio, L. G., Saito, A., Phys. Chem. Chemical Phys.. 9 12761291 (2007).CrossRefGoogle Scholar
Eda, B.G., Lin, Y., Mattevi, C., Yamaguchi, H., Chen, H., Chen, I., Chen, C., Chhowalla, M., Adv. Materials. 22 505509 (2010).CrossRefGoogle Scholar
Du, D., Song, H., Nie, Y., Sun, X., Chen, L., Ouyang, J., J. Phys. Chem. C. 119 2008520090 (2015).CrossRefGoogle Scholar
Vallés, C., Kinloch, I., Wilson, N., Rourke, J.P., Rourke, J.P., J. Mat. Chem. C. 1 338342 (2012).Google Scholar
Hara, Y., Yoshihara, K., Kondo, K., Ogata, S., Watanabe, T., Ishii, A., Hasegawa, M., J. Mat. Chem. C. 112 173103 (2018).Google Scholar
Binnemans, K., Coordination Chemistry Reviews. 295 145 (2015).CrossRefGoogle Scholar