Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-12T08:09:40.876Z Has data issue: false hasContentIssue false

Comparison of Capacity Retention Rates During Cycling of Quinone-Bromide Flow Batteries

Published online by Cambridge University Press:  27 December 2016

Michael R. Gerhardt
Affiliation:
Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, U.S.A.
Eugene S. Beh
Affiliation:
Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, U.S.A. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, U.S.A.
Liuchuan Tong
Affiliation:
Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, U.S.A.
Roy G. Gordon
Affiliation:
Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, U.S.A. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, U.S.A.
Michael J. Aziz*
Affiliation:
Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, U.S.A.
*
Get access

Abstract

We use cyclic charge-discharge experiments to evaluate the capacity retention rates of two quinone-bromide flow batteries (QBFBs). These aqueous QBFBs use a negative electrolyte containing either anthraquinone-2,7-disulfonic acid (AQDS) or anthraquinone-2-sulfonic acid (AQS) dissolved in sulfuric acid, and a positive electrolyte containing bromine and hydrobromic acid. We find that the AQS cell exhibits a significantly lower capacity retention rate than the AQDS cell. The observed AQS capacity fade is corroborated by NMR evidence that suggests the formation of hydroxylated products in the electrolyte in place of AQS. We further cycle the AQDS cell and observe a capacity fade rate extrapolating to 30% loss of active species after 5000 cycles. After about 180 cycles, bromine crossover leads to sufficient electrolyte imbalance to accelerate the capacity fade rate, indicating that the actual realization of long cycle life will require bromine rebalancing or a membrane less permeable than Nafion® to molecular bromine.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Soloveichik, G. L., Chem Rev 115 (20), 1153311558 (2015).CrossRefGoogle Scholar
Huskinson, B., Marshak, M. P., Suh, C., Er, S., Gerhardt, M. R., Galvin, C. J., Chen, X., Aspuru-Guzik, A., Gordon, R. G. and Aziz, M. J., Nature 505 (7482), 195198 (2014).Google Scholar
Chen, Q., Eisenach, L. and Aziz, M. J., Journal of The Electrochemical Society 163, A5057A5063 (2016).Google Scholar
Yang, B., Hoober-Burkhardt, L., Wang, F., Surya Prakash, G. K. and Narayanan, S. R., Journal of the Electrochemical Society 161, A1371A1380 (2014).CrossRefGoogle Scholar
Yang, B., Hoober-Burkhardt, L., Krishnamoorthy, S., Murali, A., Prakash, G. K. S. and Narayanan, S. R., Journal of The Electrochemical Society 163 (7), A1442A1449 (2016).Google Scholar
Huskinson, B., Marshak, M. P., Gerhardt, M. R. and Aziz, M. J., ECS Transactions 61, 2730 (2014).CrossRefGoogle Scholar
Gerhardt, M. R., Tong, L., Gómez-Bombarelli, R., Chen, Q., Marshak, M. P., Galvin, C. J., Aspuru-Guzik, A., Gordon, R. G. and Aziz, M. J., Advanced Energy Materials, 1601488 (2016).Google Scholar
Bard, A. J. and Faulkner, L. R., Electrochemical methods : fundamentals and applications. (Wiley, New York, 2001).Google Scholar
Cho, K. T., Tucker, M. C., Ding, M., Ridgway, P., Battaglia, V. S., Srinivasan, V. and Weber, A. Z., ChemPlusChem 80 (2), 402411 (2015).Google Scholar