Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:55:44.418Z Has data issue: false hasContentIssue false

A Comparative Characterization Study of Molybdenum Oxide Thin Films Grown Using Femtosecond and Nanosecond Pulsed Laser Deposition

Published online by Cambridge University Press:  11 April 2016

Harsha K. Puppala*
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, 901 South National Avenue, Springfield, MO 65897, USA.
Anthony T. Pelton
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, 901 South National Avenue, Springfield, MO 65897, USA.
Robert A. Mayanovic
Affiliation:
Department of Physics, Astronomy, and Materials Science, Missouri State University, 901 South National Avenue, Springfield, MO 65897, USA.
Get access

Abstract

Group 6 transition metal oxide thin films are in large demand for photocatalysis, heterogeneous catalysis, fuel cell, battery and electronic applications. Pulsed laser deposition offers an inexpensive method for the preparation of nanostructured thin films that may be suitable for heterogeneous catalysis. We have synthesized molybdenum oxide thin films using two types of pulsed laser deposition (PLD). The first method utilizes femtosecond laser-based PLD (f-PLD) while the second method uses an excimer (nanosecond) laser-based PLD (n-PLD). The PLD films have been deposited using f-PLD and, separately, n-PLD on glass and silicon substrates and subsequently annealed to 450 °C for up to 20 hours in air using a Linkam stage. SEM, XRD and Raman spectroscopic characterization shows that the f-PLD films are substantially more textured and partially crystalline prior to annealing whereas the n-PLD-grown thin films are much smoother and predominantly amorphous. A 3-dimensional nano-crystalline structure is evident in the post-annealed f-PLD synthesized thin films, which is desirable for catalytic applications. XPS elemental analysis shows that the stoichiometry of the f-PLD and n-PLD thin films is consistent with the presence of MoO2 and MoO3. Our results are discussed in terms of thin film growth models suitable for f-PLD vs n-PLD.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kanu, S. S., Binions, R., Proc. R. Soc. A 466, 19-44 (2009).Google Scholar
Nazri, G.-A., Julien, C., Solid State Ionics 53, 376382 (1992).CrossRefGoogle Scholar
Sunu, S.S., Prabhu, E., Jayaraman, V., Gnanasekar, K.I., Gnanasekaram, T., Sens. Actuators B-Chem 94, 189196 (2003).Google Scholar
Balendhran, S., Walia, S., Nili, H., Ou, J. Z., Zhuiykov, S., Kaner, R. B., Sriram, S., Bhaskaran, M., Kalantar-zadeh, K., Adv. Funct. Mater. 23, 39523970 (2013).Google Scholar
Amoruso, S., Ausanio, G., Bruzzese, R., Vitiello, M., Wang, X., Phys. Rev. B 71, 033406 (2005).Google Scholar
Okoshi, M., Higashikawa, K., Hanabusa, M., Appl. Surf. Sci. 154 –155, 424427 (2000).CrossRefGoogle Scholar
Sanz, M., de Nalda, R., Marco, J.F., Izquierdo, J.G., Ban˜ares, L., Castillejo, M., J. Phys. Chem. C 114, 48644868 (2010).Google Scholar
Perriere, J., Millon, E., Seiler, W., Boulmer-Leborgne, C., Craciun, V., Albert, O., Loulergue, J.C., Etchepare, J., J. Appl. Phys. 91, 690696 (2002).Google Scholar
Baltrusaitis, J., Mendoza-Sanchez, B., Fernandez, V., Veenstra, R., Dukstiene, N., Roberts, A., Fairley, N., Appl. Surf. Sci. 326, 151161 (2015).CrossRefGoogle Scholar
Camacho-Lopez, M. A., Escobar-Alarcon, L., Picquart, M., Arroyo, R., Cordoba, G., Haro-Poniatowski, E., Optical Materials 33, 480484 (2011).Google Scholar