Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T01:01:33.100Z Has data issue: false hasContentIssue false

Sodium Interaction with Disodium Terephthalate Molecule: an Ab Initio Study

Published online by Cambridge University Press:  22 June 2016

Mahasin Alam Sk
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576, Singapore
Sergei Manzhos*
Affiliation:
Department of Mechanical Engineering, National University of Singapore, Block EA #07-08, 9 Engineering Drive 1, Singapore 117576, Singapore
Get access

Abstract

Disodium terephthalate (Na2TP), which is a disodium salt of terephthalic acid, is very promising organic electrode material for Na-ion batteries. We present an ab initio study of Na binding mechanism with Na2TP molecule. Specially, we provide the interaction energy of Na atom(s), effect of Na concentration on interaction energy, electronic properties of clean and Na attached Na2TP, and Na binding mechanism with Na2TP. We show that up to eight Na atoms can be attached to a single Na2TP molecule. The interaction energy of Na atoms varies from -0.79 to -0.66 eV with attachment of one to eight Na atoms. The adsorbed Na atom interacts with O atoms of carboxylate group and Na atoms of the salt molecule. The interaction between adsorbed Na and C atoms of the molecule is found to be not important for Na bindings. Attachment of a single Na atom generates a singly occupied orbital which becomes doubly occupied with attachment of second Na atoms. Attachment of more than two Na atoms leads to electron occupation of bonding orbitals formed between Na atoms and the carboxylate groups.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Liang, Y., Tao, Z., Chen, J., Adv. Energy Mater. 2, 742 (2012).CrossRefGoogle Scholar
Wang, J., Too, C. O., Wallace, G. G., J. Power Sources, 150, 223 (2005)CrossRefGoogle Scholar
NuLi, Y., Guo, Z., Liu, H., Yang, J., Electrochem. Commun. 9, 1913 (2007).CrossRefGoogle Scholar
Han, X., Chang, C., Yuan, L., Sun, T., Sun, J., Adv. Mater. 19, 1616, 2007.CrossRefGoogle Scholar
Choi, W., Harada, D., Oyaizu, K., Nishide, H., J. Am. Chem. Soc. 133, 19839 (2011).CrossRefGoogle Scholar
Yoshihara, S., Katsuta, H., Isozumi, H., Kasai, M., Oyaizu, K., Nishide, H., J. Power Sources 196, 7806 (2011).CrossRefGoogle Scholar
Zhao, L., Wang, W., Wang, A., Yuan, K., Chen, S., Yang, Y., J. Power Sources 233, 23 (2013).CrossRefGoogle Scholar
Armand, M., Grugeon, S., Vezin, H., Laruelle, S., Ribière, P., Poizot, P. and Tarascon, J.-M., Nature Mater. 8, 120, (2009).CrossRefGoogle Scholar
Ogihara, N., Yasuda, T., Kishida, Y., Ohsuna, T., Miyamoto, K., Ohba, N., Angew Chem Int Ed Engl. 53, 11467 (2014).CrossRefGoogle Scholar
Zhao, L., Zhao, J., Hu, Y.-S., Li, H., Zhou, Z., Armand, M., Chen, L., Adv. Energy Mater. 2, 962 (2012).CrossRefGoogle Scholar
Park, Y., Shin, D.-S., Woo, S. H., Choi, N. S., Shin, K. H., Oh, S. M., Lee, K. T., Hong, S. Y., Adv. Mater. 24, 3562 (2012).CrossRefGoogle Scholar
Abouimrane, A., Weng, W., Eltayeb, H., Cui, Y., Niklas, J., Poluektov, O., Amine, K., Energy Environ. Sci. 5, 9632 (2012).CrossRefGoogle Scholar
Koch, W., Holthausen, M. C., A Chemist’s Guide to Density Functional Theory; Wiley-VCH, 2000.Google Scholar
Parr, R. G., Yang, W., Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.Google Scholar
Adamo, C., Barone, V., J. Chem. Phys. 110, 6158 (1999).CrossRefGoogle Scholar
Chen, Y., Manzhos, S., Phys. Chem. Chem. Phys. 18, 1470 (2016).CrossRefGoogle Scholar
Chen, Y., Manzhos, S., Phys. Chem. Chem. Phys. (2016) DOI: 10.1039/C5CP07474F.Google ScholarPubMed