Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T19:00:25.312Z Has data issue: false hasContentIssue false

Impact of plastic deformation on plasma induced damage and deuterium retention in tungsten

Published online by Cambridge University Press:  15 June 2017

A. Bakaeva
Affiliation:
Structural Materials Group, Institute of Nuclear Materials Science, SCK·CEN, Mol, 2400, Belgium Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent, Belgium
D. Terentyev*
Affiliation:
Structural Materials Group, Institute of Nuclear Materials Science, SCK·CEN, Mol, 2400, Belgium
A. Dubinko
Affiliation:
Structural Materials Group, Institute of Nuclear Materials Science, SCK·CEN, Mol, 2400, Belgium Department of Applied Physics, Ghent University, St. Pietersnieuwstraat 41, 9000 Ghent, Belgium
*
Get access

Abstract

Recent theoretical and subsequent experimental studies suggest that the uptake and release of deuterium (D) in tungsten (W) under high flux ITER-relevant plasma exposure is controlled by dislocation microstructure. Thanks to numerical calculations, a comprehensive mechanism for the nucleation and growth of D bubbles on dislocation network was proposed. The process of bubble nucleation can be described as D atom trapping at a dislocation line, its in-core migration, the coalescence of several D atoms into a multiple cluster eventually transforming into a nano-bubble. This view implies that the initial microstructure might be crucial for D uptake and degradation of the sub-surface layer under prolonged plasma exposure. In this work, we apply several experimental techniques to investigate the microstructure and mechanical properties of surface and sub-surface layer of W in recrystallized and plastically-deformed condition exposed to the high flux plasma. We use transmission and scanning electron microscopy, thermal desorption spectroscopy as well as nano-indentation measurements.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Myers, S.M., Baskes, M.I., Birnbaum, H.K., Corbett, J.W., et al. . Rev. Modern Physics 64, 559 (1992).Google Scholar
Daw, M. and Baskes, M.. Phys. Rev. Lett. 50, 1285 (1983).Google Scholar
Matsuda, S. and Tobita, K.. Journal of Nucl. Sci. Tech. 50, 321 (2013).Google Scholar
Johnson, D.F. and Carter, E.A.. J.Mater.Res. 25, 315 (2010).Google Scholar
Heinola, K., Ahlgren, T., Nordlund, K and Keinonen, J.. Phys. Rev. B 82, 094102 (2010).Google Scholar
Difoggio, R. and Gomer, R..Phys. Rev. Lett. 44, 1258 (1980).Google Scholar
Ahlgren, T., Heinola, K., K.Vortler, and Keinonen, J.. J. Nucl. Mater. 427, 152 (2012).Google Scholar
Terentyev, D., Dubinko, V., Bakaev, A., Zayachuk, Y., Van Renterghem, W. and Grigorev, P.. Nuclear Fusion 54, 042004 (2014).Google Scholar
Pintsuk, G.. Comprehensive Nuclear Materials 4, 551 (2012).Google Scholar
Uytdenhouwen, I., Decreton, M., Hirai, T., Linke, J., Pintsuk, G. and Van Oost, G.. J. Nucl. Mater. 363-365, 1099 (2007).Google Scholar
Terentyev, D., Xiao, X.Z., Dubinko, A., Bakaeva, A. and Duan, H.L.. J. Mech. Phys. Solids 85, 1 (2015).Google Scholar
van Rooij, G.J., Veremiyenko, V.P., Goedheer, W.J., de Groot, B., et al. . Appl. Phys. Lett. 90 (2007).Google Scholar
van der Meiden, H, Al, R., Barth, C., Donee, A., Engeln, R. and Goedheer, W.. Rev. Sci. Instrum. 79, 013505 (2008).Google Scholar
Zayachuk, Y., ’t Hoen, M.H.J., van Emmichoven, P.A.Z., Uytdenhouwen, I. and van Oost, G.. Nuclear Fusion 52, 103021 (2012).Google Scholar
Zayachuk, Y., ’t Hoen, M.H.J., van Emmichoven, P.A.Z., Terentyev, D., Uytdenhouwen, I. and van Oost, G.. Nuclear Fusion 53, 013013 (2013).Google Scholar
Oliver, W. and Pharr, G.. J Mater Res 19, 3 (2004).Google Scholar
Shu, W.M., Wakai, E. and Yamanishi, T.. Nuclear Fusion 47, 201 (2007).Google Scholar
Skinner, C.H., Haasz, A.A., Alimow, V.K., Bekris, N., et al. . Fusion Science and Technology 54, 891 (2008).Google Scholar
Armstrong, D.E.J., Edmondson, P.D. and Roberts, S.G.. Applied Physics Letters 102 (2013).Google Scholar
Zhang, Z.X., Chen, D.S., Han, W.T. and Kimura, A.. Fusion Engineering and Design 98-99, 2103 (2015).Google Scholar
Ogorodnikova, O.V., Roth, J. and Mayer, M.. J Appl. Phys. 103, 034902 (2008).Google Scholar