Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T13:44:12.227Z Has data issue: false hasContentIssue false

Characterization of LPE-Ga0.86In0.14As0.13Sb0.87

Published online by Cambridge University Press:  05 September 2017

J. Díaz-Reyes*
Affiliation:
Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional. Ex-Hacienda de San Juan Molino Km. 1.5. Tepetitla, Tlaxcala. 90700. México.
J. S. Arias-Cerón
Affiliation:
Catedrático CONACYT, Depto. de Ingeniería Eléctrica, SEES, CINVESTAV-IPN. AP. 14-740. México City. 07000. México.
J. G. Mendoza-Álvarez
Affiliation:
Depto de Física, CINVESTAV-IPN. AP. 14-740. México City. 07000. México.
J. L. Herrera-Pérez
Affiliation:
UPIITA, Instituto Politécnico Nacional. Av. Instituto Politécnico Nacional 2580, Barrio La Laguna, Ticomán. México City. 07340. México.
Get access

Abstract

Using the liquid phase epitaxy technique (LPE) Ga0.86In0.14As0.13Sb0.87 layers lattice-matched to (100) Te-GaSb have been deposited, which were intentionally doped with Te and Zn in a wide range. The Raman spectra show that the layers become more defective as the dopant molar fraction is increased. Two main vibrational bands are observed in the Raman spectra centred at 230 and 245 cm-1 that depend strongly on the Te (Zn) molar concentration, which are assigned to the vibrational modes GaAs-like and to (GaSb+InAs)-like mixture. The low-temperature photoluminescence of n (p)-type GaInAsSb was obtained as a function of Te (Zn) concentration added to the melt solution. The photoluminescence was interpreted taking into account nonparabolicity of the conduction (valence) band. It is shown that the band-to-band radiative transition energy can be used to estimate the free carrier concentration in GaInAsSb, for a wide range of doping concentration.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amariei, A., Polychroniadis, E. K., Dimroth, F., Bett, A. W., J. Cryst. Growth 275 e1229e1234 (2005).CrossRefGoogle Scholar
Choi, H. K., Turner, G. W., Liau, Z. L., Appl. Phys. Lett. 65 22512253 (1994).CrossRefGoogle Scholar
Nakajima, K., Osamura, K., Yasuda, K., Murakami, Y., J. Cryst. Growth 41 8792 (1977).Google Scholar
Lazzari, J. L., Tournié, E., Pitard, F., Joullié, A., Mat. Sci. Eng. B 9 125128 (1991).Google Scholar
Dıaz-Reyes, J., Mendoza-Alvarez, J. G., Gomez-Herrera, M L. J. Phys.: Condens. Matter 18 1086110869 (2006).Google Scholar
McGlinn, T. C., Krabach, T. N., Klein, M. V., Bajor, G., Greene, J. E., Kramer, B., Barnett, S. A., Lastras, A., Gorbatkin, S.. Phys. Rev. B 33 83968401 (1986).Google Scholar
Díaz-Reyes, J., Mendoza-Álvarez, J. G., Rodríguez-Fragoso, P., López-Cruz, E., Herrera-Pérez, J. L.. Vib. Spectrosc. 68 109114 (2013).CrossRefGoogle Scholar
Menendez, J., Pinczuk, A., Bevk, J., Mannaerts, J. P.. J. Vac. Sci. Technol. B 6 13061309 (1988).Google Scholar
Frost, F., Lippold, G., Schindler, A., Bigl, F., J. Appl. Phys. 85 8378 (1999).CrossRefGoogle Scholar
Loudon, R.. Adv. Phys. 13 423482 (1964).CrossRefGoogle Scholar
Olego, D., Cardona, M.. Phys. Rev.B 24 72177232 (1981).CrossRefGoogle Scholar
Kane, E. O.. Phys., J.. Chem. Solids 1 249261 (1957).Google Scholar
Bose, M. K., Midya, K., Bose, C.. J. Appl. Phys. 101 054315–1 to 5 (2007).Google Scholar
Mikhailova, M. P., in Handbook Series on Semiconductor Parameters, vol. 2, Levinshtein, M., Rumyantsev, S. and Shur, M., Ed., World Scientific, London 180-205 (1999).Google Scholar
Bravo-García, Y. E., Zapata-Torres, M., Rodríguez-Fragoso, P., Mendoza-Álvarez, J. G., Herrera-Pérez, J. L., Cardona-Bedoya, J. A., Gómez-Herrera, M. L.. Superficies y Vacío 25 175178 (2012).Google Scholar
Biefeld, R. M., Cederberg, J. G., Peake, G. M., Kurtz, S. R., J. Cryst. Growth 225 384390 (2001).Google Scholar