Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T10:09:32.406Z Has data issue: false hasContentIssue false

Palladosilicide, Pd2Si, a new mineral from the Kapalagulu Intrusion, Western Tanzania and the Bushveld Complex, South Africa

Published online by Cambridge University Press:  02 January 2018

L. J. Cabri*
Affiliation:
Cabri Consulting Inc., 700-702 Bank Street, PO Box 14087, Ottawa, Ontario, Canada K1S 3V0
A. M. McDonald
Affiliation:
Department of Earth Sciences, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6
C. J. Stanley
Affiliation:
Natural History Museum, Cromwell Road, London SW7 5BD, UK
N. S. Rudashevsky
Affiliation:
CNT Instruments LTD, Svetlanovsky Ave. 75-41, St. Petersburg, Russia
G. Poirier
Affiliation:
Canadian Museum of Nature, Earth Science Research Services, 1740 Pink Road, Gatineau, Quebec J9J 3N7 (formerly Canmet, Ottawa)
H. R. Wilhelmij
Affiliation:
Ore Deposit Geologist, 3 Norham End, North Oxford OX2 6SG, UK (formerly Lonmin–Goldstream JV, Australia)
W. Zhe
Affiliation:
Central Analytical Facility, Laurentian University, Ramsey Lake Road, Sudbury, Ontario, Canada P3E 2C6
V. N. Rudashevsky
Affiliation:
CNT Instruments LTD, Svetlanovsky Ave. 75-41, St. Petersburg, Russia

Abstract

Palladosilicide, Pd2Si, is a new mineral (IMA 2014-080) discovered in chromite-rich samples from the Kapalagulu intrusion, western Tanzania (30°03′51′′E 5°53′16′′S and 30°05′37′′E 5°54′26′′S) and from the UG-2 chromitite, Bushveld complex, South Africa. A total of 13 grains of palladosilicide, ranging in size from 0.7 to 39.1 μm (equivalent circle diameters), were found. Synthetic Pd2Si is hexagonal, space group P62m, with a = 6.496(5), c = 3.433(4) Å, V = 125.5(1) Å3, c:a = 0.529 with Z = 3. The strongest lines calculated from the powder pattern (Anderko and Schubert, 1953) are [d in Å (I) (hkl)] 2.3658 100 (111); 2.1263 37 (120); 2.1808 34 (021); 3.240 20 (110); 1.8752 19 (030); 1.7265 12 (002); 1.3403 11 (122); 1.2089 10 (231). The calculated density for three analyses varies from 9.562 to 9.753 g cm–3. Palladosilicide is considered to be equivalent to synthetic Pd2Si based on results from electron backscattered diffraction analyses. Reflectance data in air for the four Commission on Ore Mineralogy wavelengths are [λ nm, R1 (%) R2 (%)] 470 49.6 52.7; 546 51.2 53.8; 589 51.6 53.7; 650 51.7 53.3 and the mineral is bright creamy white against chromite, weakly bireflectant and displays no discernible pleochroism or twinning. It is weakly anisotropic, has weak extinction and rotation tints in shades of blue and olive green. Electron probe microanalyses of palladosilicide yield a simplified formula of Pd2Si.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderko, K. and Schubert, K. (1953) Kristallstruktur von Pd2Si, Pd2Ge und Pt2Ge. Zeitschrift für Metallkunde, 44, 307312.Google Scholar
Bai, W, Robinson, P.T., Fang, Q., Yang, J., Yan, B., Zhang, Z., Hu, X., Zhou, M. and Malpas, J. (2000) The PGE and base-metal alloys in the podiform chromitites of the Luobusha ophiolite, southern Tibet. The Canadian Mineralogist, 38, 585598.CrossRefGoogle Scholar
Bai, W., Shi, N., Fang, Q., Li, G., Xiong, M., Yang, J. and Rong, H. (2006) Luobusaite: A New Mineral. Acta Geologica Sinica, 80, 656659.Google Scholar
Buddery, J.H. and Welsh, A.J.E. (1951) Borides and silicides of the platinum metals. Nature, 167, 362. Buseck, P.R. (1969) Phosphide from Metorites [sic]: Barringerite, a New Iron-Nickel Mineral. Science, New Series, 165(3889), 169171.Google Scholar
Day, A. and Trimby, P. (2004) Channel 5 Manual. HKL Technology, Inc., Hobro, Denmark. Cabri, L.J. (1965) Phase relations in the Au-Ag-Te system and their mineralogical significance. Economic Geology, 60, 15691606.Google Scholar
Cabri, L.J. (2004) A mineralogical examination of samples from the Kapalagulu Intrusion, western Tanzania, for Goldstream Mining NL. Confidential Report 2004-03, 92 pp. Cabri, L.J., Rudashevsky, N.S. and Rudashevsky, V.N. (2008) Current approaches for the process mineralogy of platinum-group element ores and tailings. Ninth International Congress for Applied Mineralogy ICAM 2008. The Australasian Institute of Mining and Metallurgy, Publication Series No 8/2008, 917.Google Scholar
Cabri, L.J., McDonald, A.M., Stanley, C.J., Rudashevsky, N.S., Poirier, G., Wilhelmij, H.R., Zhe, W. and Rudashevsky, V.N. (2015) IMA 2014-080. CNMNC Newsletter No. 23, February 2015, page 56; Mineralogical Magazine, 79, 5158.Google Scholar
Cawthorn, R.G. (2002) Platinum-group element deposits in the Bushveld Complex, South Africa. Pp. 389430. in: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements (L.J. Cabri, editor). Canadian Institute Mining Metallurgy Petroleum, Special Vol. 54. Canadian Institute Mining, Québec, Canada.Google Scholar
Gevork’yan, V.K. (1969) The occurrence of natural ferrosilicon in the northern Azov region. Doklady Akademii Nauk SSSR, 185, 416418. [in Russian, cited by Li et al., 2012].Google Scholar
Gevork’yan, V.K., Litvin, A.L. and Povarennykh, A.S. (1969) Occurrence of the new minerals fersilicite and ferdisilicite. Geologichesky Zapiski Akademii Nauk Ukrainskaya SSR, 29, 6271. [in Russian, cited by Li et al., 2012].Google Scholar
Grigorev, A.T., Strunina, T.A. and Adamova, A.S. (1952) Investia Sektora Platiny, 27, 219222. [cited by Hansen and Anderko, 1958].Google Scholar
Hansen, M. and Anderko, K. (1958) Constitution of Binary Alloys. Metallurgy and Metallurgical Engineering Series. McGraw-Hill Book Co., New York, pp. 1305.CrossRefGoogle Scholar
Li, G., Bai, W., Shi, N., Fang, Q., Xiong, M., Yang, J., Ma, Z. and Rong, H. (2012a) Linzhiite, FeSi2, a redefined and revalidated new mineral species from Luobusha, Tibet, China. European Journal of Mineralogy, 24, 10471052.CrossRefGoogle Scholar
Li, G., Shi, N., Xiong, M., Ma, Z., Bai, W. and Fang, Q. (2012b) Naquite, FeSi, a new mineral species from Luobusha, Tibet, western China. Acta Geologica Sinica, 86(3), 553–538.Google Scholar
Maier, W.D., Barnes, S.-J., Bandyayera, D., Livesey, T., Li, C. and Ripley, E. (2008). Early Kibaran riftrelated mafic-ultramafic magmatism in western Tanzania and Burundi: Petrogenesis and ore potential of the Kapalagulu and Musongati layered intrusions. Lithos, 101, 2453.CrossRefGoogle Scholar
McDonald, A.M., Cabri, L.J., Stanley, C.J., Good, D.J., Redpath, J., Lane, G., Spratt, J. and Ames, D.E. (2015) Coldwellite, Pd3Ag2S, a new mineral from the Coldwell Complex, Ontario, Canada. The Canadian Mineralogist (in press).Google Scholar
Mungall, J.E. (2014) Geochemistry of Magmatic Ore Deposits. Pp. 195218. in: Earth Treatise on Geochemistry 2nd Edition, (H.D. Holland and K.K. Turkenian, editors.). 13. Elsevier, Amsterdam.Google Scholar
Myers, W.M. and Peck, A.B. (1925) A fulgurite from South Amboy, New Jersey. American Mineralogist, 10, 152155.Google Scholar
Nylund, A. (1966) Some notes on the palladium-silicon system. Acta Chemica Scandanavica, 20, 23812386.CrossRefGoogle Scholar
Rudashevskii, N.S. (1984) A new model for the differentiation of elements of the platinum group in the lithosphere. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchevsta 113, 521539. (English translation, ref #1664907, Canmet Library, Ottawa. Ontario, Canada 1985, pp. 34.)Google Scholar
Rudashevskii, N.S., Kretser, Y.L., Anikeeva, L.I., Andreev, S.I., Torokhov, M.P. and Kazakova, V.E. (2001) Platinum minerals in oceanic ferromanganese crusts. Doklady Earth Sciences, 378, 464467.Google Scholar
Rudashevskiy, N.S. (1983) New features of differentiation of platinum group elements in the earth’s crust. Doklady Akademii Nauk SSSR, 268(1), 201206. [English translation in Doklady Earth Science Sections, 1984, 268, 178182.Google Scholar
Rudashevskiy, N.S. and Yertseva, L.N. (1987) Diffusion of iron into platinum metals in platinoid mineralization in ultramafites. Geologiya rudnykh mestorozhdeniy, 1987(6), 4655. [English translation in International Geology Review, 29, 12461253.Google Scholar
Rudashevsky, N.S., McDonald, A.M., Cabri, L.J., Nielsen, T.D.F., Stanley, C.J., Kretser, Y.L. and Rudashevsky, V.N. (2004) Skaergaardite, PdCu, a new platinum-group intermetallic mineral from the Skaergaard intrusion, Greenland. Mineralogical Magazine, 68, 603620.CrossRefGoogle Scholar
Schouwstra, R.P., Kinloch, E.D. and Lee, C.A. (2000) A short geological review of the Bushveld complex. Platinum Metals Review, 44, 3339.Google Scholar
Spandler, C., O’Neill, H.StC. and Kamenetsky, V.S. (2007) Survival times of anomalous melt inclusions from element diffusion in olivine and chromite. Nature, 447, 303306.CrossRefGoogle ScholarPubMed
Stanley, C.J., Criddle, A.J., Förster, H.-J. and Roberts, A.C. (2002) Tischendorfite, Pd8Hg3Se9, a new mineral species from Tilkerode, Harz Mountains, Germany. The Canadian Mineralogist, 40, 739745.CrossRefGoogle Scholar
Wilhelmij, H.R. and Joseph, G. (2004) Stratigraphic location of platinum mineralisation in the Kapalagulu intrusion of western Tanzania. Pp. 709–708. in: Geoscience Africa (L.D. Ashwal, editor). Abstracts vol. 2. School of Geosciences, University of the Witwatersrand, South Africa.Google Scholar
Yang, J-S, Robinson, P.T. and Dilek, Y. (2014) Diamonds in ophiolite. Elements, 10, 127130.CrossRefGoogle Scholar
Yu, Z. (1984) Two new minerals gupeiite and xifengite in cosmic dusts from Yanshan. Acta Petrologica Mineralogica et Analytica, 3, 231238. [in Chinese with English abstract].Google Scholar