Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T21:56:10.317Z Has data issue: false hasContentIssue false

Oxo-mangani-leakeite from the Hoskins mine, New South Wales, Australia: occurrence and mineral description

Published online by Cambridge University Press:  02 January 2018

Roberta Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sede secondaria di Pavia, via Ferrata 1, I-27100 Pavia, Italy
Massimo Boiocchi
Affiliation:
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, I-27100 Pavia, Italy
Frank C. Hawthorne
Affiliation:
3 Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
Neil A. Ball
Affiliation:
3 Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
Paul M. Ashley
Affiliation:
Earth Sciences, University of New England Armidale, NSW 2351, Australia

Abstract

Oxo-mangano-leakeite, a newly approved end-member of the amphibole supergroup (IMA-CNMNC 20150-35), has been found in a rock containing manganese silicate and oxide at the Hoskins Mine, a Mn deposit 3 km west of Grenfell, New South Wales. The end-member formula of oxo-mangani-leakeite is ANaBNa2C(Mn3+4Li)TSi8 O22WO2, which would require SiO2 53.15, Mn2O3 34.91, Li2O 1.66, Na2O 10.28, total 100.00 wt.%. The empirical formula derived for the sample of this work from electron and ion microprobe analysis using constraints resulting from single-crystal structure refinement is A(Na0.65K0.36)∑ = 1.01B(Na1.94Ca0.06)∑ = 2.00C(Mg1.60Zn0.01 Li0.58)∑ = 5.01T(Si7.98Al0.02)∑ = 8.00O22W(O1.34OH0.66)∑ = 2.00. Oxo-mangano-leakeite is biaxial (–), with α = 1.681, β = 1.712, γ = 1.738, all ± 0.002, and 2V (meas.) = 81.0(4)°, 2V (calc.) = 83.5°. The unit-cell dimensions are a = 9.875(5), b = 17.873(9), c = 5.295(2) Å, β = 104.74(3)°, V = 903.8 (7) Å3; the space group is C2/m, with Z = 2. The strongest ten reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 8.423, 100, (110); 3.377, 46, (131); 4.461, 40, (040); 4.451, 40, (021); 3.134, 37, (310); 2.694, 37, (151); 2.282, 27, (); 2.734, 25, (31); 2.575, 24, (061); 2.331, 24, [() ()]. The holotype material is deposited in the Canadian Museum of Nature, Ottawa, under the catalogue number CMNMC 86895.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armbruster, T., Oberhänsli, R., Bermanec, Y and Dixon, R. (1993) Hennomartinite and kornite, two new Mn3+rich silicates from the Wessels mine, Kalahari, South Africa. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 349—355.Google Scholar
Ashley, P.M. (1986) An unusual manganese silicate occurrence at the Hoskins mine, Grenfell district, New South Wales. Australian Journal of Earth Sciences, 33, 443456.CrossRefGoogle Scholar
Ashley, P.M. (1989) Geochemistry and mineralogy of tephroite-bearing rocks from the Hoskins manganese mine, New South Wales, Australia. Neues Jahrbuch für Mineralogie Abhandlungen, 161, 85—111.Google Scholar
Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J.B. (1992) EXCALIBR II. Zeitschrift für Kristallographie, 199, 185196.CrossRefGoogle Scholar
Bruker, (2003) SAINT Software Reference Manual., Version 6. Bruker AXS Inc., Madison, Wisconsim USA.Google Scholar
Busing, W.R., Martin, K.O. and Levy, H.A. (1962) ORFLS. Report Ornl-Tm-305. Oak Ridge National Laboratory, Tennessee, USA.Google Scholar
Cannillo, E., Germani, G. and Mazzi, F. (1983) New crystallographic software for Philips PW11000 single crystal diffractometer.CNR Centro di Studio per la Cristallografia, Internal Report 2.Google Scholar
Dana, E.S. (1892) Dana's System of Mineralogy., 6th Edition. John Wiley, New York p. 392.Google Scholar
Eggleton, R.A. and Ashley, P.M. (1989) Norrishite, a new manganese mica, K(Mn32þLi)Si4O12, from the Hoskins mine, New South Wales, Australia. American Mineralogist, 74, 13601367.Google Scholar
Gentili, S., Biagioni, C., Comodi, P., Pasero, M., McCammon, C. and Bonadiman, C. (2014) Ferri-kaersutite. Mineralogical Magazine, 78, 1241—1248.Google Scholar
Hawthorne, F.C., Oberti, R., Ungaretti, L. and Grice, J.D. (1992) Leakeite, NaNa2 (Mg2Fe32þLi) Si8O22(OH)2, a new alkali amphibole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India. American Mineralogist, 77, 11121115.Google Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Bottazzi, P. and Czamanske, G.K. (1993) Li: an important component in igneous alkali amphiboles. American Mineralogist, 78, 733745.Google Scholar
Hawthorne, F.C., Oberti, R., Cannillo, E., Sardone, N., Zanetti, A., Grice, J.D. and Ashley, P.M. (1995a) A new anhydrous amphibole from the Hoskins mine, Grenfell, New South Wales, Australia: description and crystal structure of ungarettiite, NaNa2(Mn33þMn22þ) Si8O22O2 . American Mineralogist, 80, 165172.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995b) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907—911.Google Scholar
Hawthorne, F.C., Cooper, M.A., Grice, J.D. and Ottolini, L. (2000) A new anhydrous amphibole from the Eifel region, Germany: description and crystal structure of obertiite, NaNa2(Mg3Fe3+Ti4+)Si8O22O2 . American Mineralogist, 85, 236241.CrossRefGoogle Scholar
Hawthorne, F.C., Ball, N.A. and Czamanske, G.K. (2010) Ferro-obertiite, NaNa2 (Fe23 þFe +Ti) Si8O22O2, anew mineral species of the amphibole group from Coyote Peak, Humboldt County, California. The Canadian Mineralogist, 48, 301306.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 2031—2048.CrossRefGoogle Scholar
Kalinin, Y.Y, Marsiy, I.M., Dikov, Yu, P., Troneva, N.V. and Trubkin, N.V. (1992) Namansilite NaMn3+Si2O6: A new silicate. Proceedings of the Russian Mineralogical Society, I, 8994.Google Scholar
Kawachi, Y., Coombs, D.S., Leake, B.E. and Hinton, R.W. (2002) The anhydrous amphibole ungarettiite from the Woods mine, New South Wales, Australia. European Journal of Mineralogy, 14, 375377.CrossRefGoogle Scholar
Mandarino, J.A. (2007) The Gladstone-Dale compatibility of minerals and its use in selecting mineral species for further studying. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles: I. Four- and six-coordinated Ti in richterites. European Journal of Mineralogy, 4, 425439.CrossRefGoogle Scholar
Oberti, R., Cámara, F., Ottolini, L. and Caballero, J.M. (2003) Lithium in amphiboles: detection, quantification, and incorporation mechanisms in the compositional space bridging sodic and BLi-amphiboles. European Journal of Mineralogy, 15, 309—319.CrossRefGoogle Scholar
Oberti, R., Hawthorne, EC, Cannillo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125—172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues, (F.C. Hawthorne R. Oberti G. Della Ventura and A. Mottana, editors). Reviews in Mineralogy & Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virgini USA.CrossRefGoogle Scholar
Oberti, R., Della Ventura, G., Boiocchi, M., Zanetti, A. and Hawthorne, F.C. (2017) New data on the crystal-chemistry of oxo-mangani-leakeite and mangano-mangani-ungarettiite from the Hoskins mine and their impossible solid-solution — An XRD and FTIR study. Mineralogical MagazineDOI:10.1180/ minmag.2016.080.124Google Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomie distances in halides and chalcogenides. Acta Crystalographica, A32, 751—767.CrossRefGoogle Scholar
Tait, K.T., Hawthorne, EC, Grice, J.D., Ottolini, L. and Nayak, V.K. (2005) Dellaventuraite, NaNa2(MgMn23þTi4+Li)Si8O22O2, a new anhydrous amphibole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India. American Mineralogist, 90, 304309.CrossRefGoogle Scholar
Tyrna, P.L. and Guggenheim, S. (1991) The crystal structure of norrishite, KLiMn23þSi4O12: An oxygen-rich mica. American Mineralogist, 76, 266271.Google Scholar
Zaitsev, A.N., Avdontseva, E.Y.u., Britvin, S.N., Demény, A., Homonnay, Z., Jeffries, T.E., Keller, J., Krivovichev, V.G., Markl, G., Platonova, N.V., Siidra, O.I., Spratt, J. and Vennemann, T. (2013) Oxo-magnesio-hastingsite, NaCa2(Mg2Fe3+þ)(Al2Si6) O22O2, a new anhydrous amphibole from the Deeti volcanic cone, Gregory rift, northern. Tanzania Mineralogical Magazine, 77, 27732792.CrossRefGoogle Scholar
Supplementary material: File

Oberti et al. supplementary material

Observed structure factors

Download Oberti et al. supplementary material(File)
File 59.6 KB