Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T05:03:29.032Z Has data issue: false hasContentIssue false

Origin and multiple crystallization of the kamafugite-carbonatite association: the San Venanzo-Pian di Celle occurrence (Umbria, Italy)

Published online by Cambridge University Press:  05 July 2018

F. Stoppa
Affiliation:
Dipartimento di Scienze della Terra, Università di Pemgia, Perugia, Italy
A. Cundari
Affiliation:
Dipartimento di Geofisica e Vulcanologia, Università Federico II, Napoli, Italy

Abstract

The Late Pleistocene kamafugite–carbonatite association at San Venanzo-Pian di Celle forms part of the Umbria-Latium Ultra-alkaline District (ULUD) of central Italy and, together with Toro-Ankole, SW Uganda and Mata de Corda, Brazil, represents one of three similar occurrences so far reported worldwide.

Excellent field exposure and stratigraphic control prompted a study of the kamafugite–carbonatite suite and related phase interactions to understand the nature of the distinct mineral assemblages of the pyroclasts, compared to that of the lavas, the former containing essential potassium feldspar and aluminous diopside crystals, absent in the latter.

The pyroclastic rocks represent a small amount of magma characterized by ubiquitous mantle xenocrysts and emplaced by early high-velocity eruptions. All the investigated specimens show a high Mg/(Mg+Fe2+) ratio (0.84–0.93) and high compatible elements (Ni+Cr>1000 ppm). Lavas (venanzite, i.e. leucite melilitite) and a sill (uncompahgrite, i.e. melilitolite) represent final events in the volcanic sequence. They yielded a (Na+K)/Al ratio of c. 1.1 and are larnite-bearing in the CIPW norm. Glass from the lapilli is peralkaline, i.e. (Na+K)/Al>2, and close to the lava in composition. Glass from melilitolite yielded CIPW Or and Hy and is strongly peralkaline, i.e. (Na+K)/Al = 5–6. The lapilli typically exhibit concentrically zoned structures which compound subliquidus venanzite phases, e.g. melilite, leucite, and kalsilite, with mantle xenolithic/xenocrystic debris and carbonatite phases. These lapilli represent a distinct variant of the venanzite liquid, mechanically fractionated and quenched by the diatremic process.

Mantle-normalized HFSE for both lava and lapilli show typical extrusive-carbonatite patterns. Carbonatitic beds intercalated with the pyroclastic suite are distinct and typically consist of carbonates high in Sr, Ba and REE. Primary carbonate yielded C isotope compositions ranging from –5.0 to –6.0 δ13C‰, falling within the range of mantle compositions. Distinct differentiation trends of the venanzite magma and its derivatives were recognized, hinging on the coexistence of the silicate and carbonatite fractions. Potential sanidine crystallization trends are suggested, distinct from the venanzite→melilitolite trend, reported for Oldoinyo Lengai assemblages.

Unusual aspects of the San Venanzo rock association, relative to similar rock types elsewhere, include the combination of a rare mantle source composition with a lithosphere about 80 km thick. A genetic model for the origin of the San Venanzo kamafugite–carbonatite association and related carbonate-silicate interactions is proposed and discussed. This may be relevant to the petrogenesis of similar rocks elsewhere, particularly in the light of the detailed data on the pyroclasts.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bailey, D.K. (1993) Carbonate magmas. J. Geol. Soc. London, 150, 637–51.CrossRefGoogle Scholar
Bailey, D.K. (1985) Fluids, melts, flowage and styles of eruption in alkaline–ultra-alkaline magmatism. Trans. Geol. Soc. S. Afr., 88, 449–57.Google Scholar
Bailey, D.K. (1990) Mantle carbonatite eruptions: Crustal context and implications. Lithos, 26, 3742.CrossRefGoogle Scholar
Bell, K. and Powell, J.L. (1969) Strontium isotopic studies of alkalic rocks: the potassium-rich lavas of Birunga and Toro-Ankole regions, east and central equatorial Africa. J. Petrol., 10, 536–72.CrossRefGoogle Scholar
Brozzetti, F.and Stoppa, F. (1995) Le Piroclastiti medio-pleistoceniche di Massa-martana-Acquasparta (Umbria): caratteri strutturali e vulcanologici. Il Quaternario, 8, 95110.Google Scholar
Clark, L.A. and Kullerud, G. (1959) The Fe–Ni–S system: the phase relations between pyrite and vaesite in presence excess of sulphur. Carnegie Inst. Washington Ann. Rep. Dip. Geophys. Lab., 57, 229.Google Scholar
Cundari, A. and Ferguson, A.K. (1982) Significance of the pyroxene chemistry from leucite-bearing and related assemblages. Tschermaks Mineral. Petrogr. Mitt., 30, 189204.CrossRefGoogle Scholar
Cundari, A. and Ferguson, A.K. (1991) The Roman Comagmatic Region: The lavas of S. Venanzo and Cupaello. Contrib. Mineral. Petrol., 107, 343–57.CrossRefGoogle Scholar
Dalton, J.A. and Wood, B.J. (1993) The composition of primary carbonate melts and their evolution through wallrock reaction in the mantle. Earth Planet Sci. Lett., 119, 511–25.CrossRefGoogle Scholar
Dawson, J.B. (1980) Kimberlites and their xenoliths. Minerals and Rocks, Vol. 15, Spinger Verlag, New York, pp 252.Google Scholar
de Albuquerque Sgarbi, P.B. and Gomes-Valença, J. (1993) Kalsilite in Brazilian kamafugitic rocks. Mineral. Mag., 57, 165–71.CrossRefGoogle Scholar
de La Roche, H. (1986) Classification et nomenclature des roches ignèes: un essai de restauration de la convergence entre systèmatique quantitative typologie d’usage et modèlisation gènètique. Bull. Soc. Geol. Fr., 2, 337.CrossRefGoogle Scholar
Donaldson, C.H. and Dawson, J.B. (1978) Skeletal crystallization and residual glass composition in a cellular alkalic pyroxenite nodule from Oldoinyo Lengai. Contrib. Mineral. Petrol., 67, 67139.CrossRefGoogle Scholar
Eggler, D.H. (1989) Carbonatites primary melts and mantle dynamics. In Carbonatites: Genesis and Evolution, (Bell, K., ed.), Unwin Hyman, London, pp 561–79.Google Scholar
Evensen, M.M., Hamilton, P.J. and O'Nions, R.K. (1978) Rare-Earth abundance in chondritic meteorites. Geochim. Cosmochim. Acta, 42, 1199–212.CrossRefGoogle Scholar
Foley, S.F., Venturelli, G., Green, D.H. and Toscani, L. (1987) The ultrapotassic rocks: characteristics classification and constrains for petrogenetic models. Earth Sci. Rev., 24, 81134.CrossRefGoogle Scholar
Gallo, F., Giammetti, F., Venturelli, G. and Vernia, L. (1984) The kamafugitic rocks of San Venanzo and Cupaello, central Italy. Neues Jahrb. Mineral., Mh., 198210.Google Scholar
Hamilton, D.L., Bedson, P.and Esson, J. (1989) The behaviour of trace elements in the evolution of carbon atites. In Carbona tites: Genesis and Evolution, (Bell, K., ed.), Unwin Hyman Ltd London, pp 405–27.Google Scholar
Holmes, A. (1942) A heteromorph of Venanzite. Geol. Mag., 79, 225–32.CrossRefGoogle Scholar
Kapustin, Y.L. (1980) Mineralogy of Carbonatites. Amerind Publishing Co. Pvt. New Delhi, pp 259.Google Scholar
Kjarsgaard, B.A. and Hamilton, D.L. (1989) The genesis of carbonatites by immiscibility. In Carbonatites: Genesis and Evolution, (Bell, K., ed.), Unwin Hyman Ltd London, pp 388404.Google Scholar
Lavecchia, G.and Stoppa, F. (1996) The tectonic significance of Italian magmatism: an alternative view to the popular interpretation. Terra Nova, 8, 435–46.CrossRefGoogle Scholar
Lavecchia, G., Brozzetti, F., Barchi, M., Menichetti, M.and Keller, J.A. (1994) Seismotectonic zoning in east-central Italy deduced from an analysis of the Neogene to present deformations and related stress field. Geol. Soc. Amer. Bull., 106/9, 1107–200.2.3.CO;2>CrossRefGoogle Scholar
LeBas, M.J. (1987) Nephelinites and carbonatites. In Alkaline Igneous Rocks (Fitton, J.G. and Upton, B.G.J., eds), Vol. 30, Geol. Soc. Spec. Publ., 5383.Google Scholar
LeBas, M.J. (1996) Standard rare earth element composition for sovitic and alvikitic carbonatites. In Geochemical Studies on Synthetic and Natural Rock Systems, (Gupta, A.K., Onuma, K. and Arima, M, eds.), (Kenzo Yagi volume). Allied Press, New Delhi, 90110.Google Scholar
LeMaitre, R.W., Batema, P., Dudek, A., Keller, J., Lameyre, J., LeBas, M.J., Sabine, P.A., Schmid, R., Sørensen, H., Streckeisen, A., Woolley, A.R. and Zanettin, B. (1989) A classification of Igneous Rocks and Glossary of Terms. Blackwell, Oxford, pp 193.Google Scholar
Luth, W.C. (1967) Studies in the system KAlSiO4–MgSiO4–SiO2–H2O: I. Inferred phase relations and petrologic applications. J. Petrol., 8, 372416.CrossRefGoogle Scholar
Mitchell, R.H. (1986) Kimberlites: Mineralogy, Geochemistry and Petrology. Plenum Press, New York, pp 442.CrossRefGoogle Scholar
Mitchell, R.H. (1995) Kimberlites, Orangeites, and Related rocks. Plenum Press, New York, pp 410.CrossRefGoogle Scholar
Mitchell, R.H. and Bergman, S.C. (1991) Petrology of Lamproites. Plenum Press, New York, pp 447.CrossRefGoogle Scholar
Mittempergher, M. (1965) Volcanism and petrogenesis in the San Venanzo area (Italy). Bull. Volccanol., 28, 8594.CrossRefGoogle Scholar
Moore, A.E. and Erlank, A.J. (1985) Unusual new olivine zoning: evidence for complex physicochemical changes during the evolution of olivine melilitite and kimberlite magmas. Contrib. Mineral. Petrol., 70, 391405.CrossRefGoogle Scholar
Morimoto, N. (1988) Nomenclature of pyroxenes. Mineral. Mag., 52, 535–50.CrossRefGoogle Scholar
Nakamura, N. (1974) Determination of REE Ba Fe Mg Na and K in carbonaceous and ordinary chondrites. Geochim. Cosmochim. Acta, 38, 757–75.CrossRefGoogle Scholar
Peccerillo, A. (1994) Mafic ultrapotassic magmas in central Italy: geochemical and petrological evidence against primary copositions. Miner. Petrogr. Acta, 37, 229–45.Google Scholar
Peccerillo, A., Poli, G.and Serri, G. (1988) Petrogenesis of orenditic and kamafugitic rocks from central Italy. Canad. Mineral., 26, 4565.Google Scholar
Rosenbusch, H. (1898) Uber Euktolith ein neues Glied der theralithischen Effusivmagmen. Sitzungberichte der K. Preussischen Akad., 7, 110.Google Scholar
Sabatini, V. (1899) I vulcani di San Venanzo. Riv. Ital. di Min. Cristallogr., 22, 312.Google Scholar
Sahama, T.G. (1974) Potassium-rich alkaline rocks. In: Sörensen, H., ed, The Alkaline Rocks, Wiley, New York, pp 622.Google Scholar
Smith, J.V. and Brown, W.L. (1989) Feldspar Minerals II, Springer-Verlag, Heidelberg.Google Scholar
Stoppa, F. (1996) The San Venanzo maar and tuff-ring Umbria Italy: eruptive behaviour of a carbonatitemelilitite volcano. Bull. Volcanol., 57, 563–77.Google Scholar
Stoppa, F.and Cundari, A. (1995) A new Italian carbonatite occurence at Cupaello (Rieti) and its genetic significance. Contrib. Mineral. Petrol., 122, 275–88.CrossRefGoogle Scholar
Stoppa, F.and Lavecchia, G. (1992) Late-Pleistocene ultra-alkaline magmatic activity in the Umbria-Latium region (Italy): An overview. J. Volcanol. Geotherm. Res., 52, 277–93.CrossRefGoogle Scholar
Stoppa, F.and Lupini, L. (1993) Mineralogy and petrology of the Polino monticellite-Ca-carbonatite central Italy. Mineral. Petrol., 49, 213–32.CrossRefGoogle Scholar
Stoppa, F.and Sforna, F. (1995) Geological map of the San Venanzo volcano (Central Italy): Explanatory notes. Acta Volcanol., 7, 8591.Google Scholar
Stoppa, F.and Woolley, A.R. (1997) Italian carbonatites: field occurrence petrology and regional significance. Mineral. Petrol., 59, 4367.CrossRefGoogle Scholar
Stoppa, F., Sharygin, V.and Cundari, A. (1997) New mineral data from the kamafugite–carbonatite association:-the melilitolite from San Venanzo, Italy. Mineral. Petrol., 78/3–4, 251–65.Google Scholar
Turi, B. (1969) Composizione isotopica dell'ossigeno e del carbonio dei carbonati presenti nelle vulcaniti di San Venanzo (Umbria). Period. Mineral., 38, 589603.Google Scholar
White, B.S. and Wyllie, P.J. (1992) Solidus reactions in synthetic lherzolite-H2O-CO2 from 20–30 kbar with applications to melting and metasomatism. J. Volcanol. Geotherm. Res., 50, 117–30.CrossRefGoogle Scholar
Wood, D.A., Joron, J.and Treuil, M. (1979) A reappraisal of the use of trace elements to classify and discriminate between magma series erupted in different tectonic settings. Earth Planet. Sci. Lett., 45, 326–36.CrossRefGoogle Scholar
Wyllie, P.J. (1989) Origin of carbonatites: evidence from phase equilibrium studies. In Carbonatites: Genesis and Evolution, Bell, K., ed, Unwin Hyman, London, pp 500–45.Google Scholar
Yoder, H.S. Jr and Tilley, C.E. (1962) Origin of basaltic magmas: An experimental study of natural and synthetic rock systems. J. Petrol., 3, 342532.CrossRefGoogle Scholar