Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-11T10:41:25.520Z Has data issue: false hasContentIssue false

Fluoro-tremolite from the Limecrest-Southdown quarry, Sparta, New Jersey, USA: crystal chemistry of a newly approved end-member of the amphibole supergroup

Published online by Cambridge University Press:  28 February 2018

Roberta Oberti*
Affiliation:
CNR-Istituto di Geoscienze e Georisorse, Sede secondaria di Pavia, via Ferrata 1, 27100 Pavia, Italy
Fernando Cámara
Affiliation:
Dipartimento di Scienze della Terra “A. Desio”, Università degli Studi di Milano, via Mangiagalli, 34, 20133 Milano, Italy
Fabio Bellatreccia
Affiliation:
Dipartimento di Scienze, Università Roma Tre, Largo San Leonardo Murialdo 1, 00146, Roma, Italy
Francesco Radica
Affiliation:
Dipartimento di Scienze, Università Roma Tre, Largo San Leonardo Murialdo 1, 00146, Roma, Italy School of Science and Technology-Geology Division, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
Antonio Gianfagna
Affiliation:
Dipartimento di Scienze della Terra, Università di Roma “La Sapienza”, p.le Aldo Moro 5, 00185 Roma, Italy
Massimo Boiocchi
Affiliation:
Centro Grandi Strumenti, Università di Pavia, via Bassi 21, 27100 Pavia, Italy

Abstract

During systematic characterization of amphiboles that still lack a complete mineral description, fluoro-tremolite was identified in a specimen from the Limecrest-Southdown quarry, Sparta, New Jersey, USA, which was provided by the Franklin Mineral Museum. The ideal formula of fluoro-tremolite is ABCa2CMg5TSi8O22WF2 and the empirical formula derived for the holotype specimen, based on the results of electron-microprobe analysis and single-crystal structure refinement, is A(Na0.28K0.02)Σ0.30B(Ca1.99Na0.01)Σ2.00C(Mg4.70${\rm Fe}_{{\rm 0}{\rm. 28}}^{{\rm 2 +}} $Zn0.01${\rm Ti}_{{\rm 0}{\rm. 01}}^{{\rm 4 +}} $)Σ5.00T(Si7.68Al0.32)Σ8.00O22W(F1.16OH0.84)Σ2.00. The unit-cell dimensions in space group C2/m are a = 9.846(2), b = 18.050(3), c = 5.2769(14) Å, β = 104.80(2)° and V = 906.7 (3) Å3 and Z = 2; the a:b:c ratio is 0.545:1:0.292. Fluoro-tremolite is biaxial (+), with α = 1.5987(5), β = 1.6102(5), γ = 1.6257(5), 2V(meas.) = 85(1)o and 2V(calc.) = 82o. The strongest ten reflections in the powder X-ray pattern [d values (in Å), I, (hkl)] are: 2.706, 100, (151); 3.126, 67, (310); 2.531, 59, ($\bar 2$02); 3.381, 57, (131); 2.940, 43, ($\bar 1$51, 221); 3.276, 37, (240); 2.337, 36, ($\bar 3$51); 2.592, 35, (061); 2.731, 34, ($\bar 3$31); 2.163, 34, (261). Both the mineral and the mineral name have been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (IMA2016–018); the holotype has been deposited at the Franklin Mineral Museum (32 Evans Street, Franklin, 07416 New Jersey, US), under the catalogue number 7710.

Comparison with new data on tremolite and synthetic fluoro-tremolite provides a more sound crystal-chemical model of the end-member compositions and their solid-solution.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Sergey Krivovichev

References

Andrut, M., Gottschalk, M., Melzer, S. and Najorka, J. (2000) Lattice vibrational modes in synthetic tremolite-Sr-tremolite and tremolite-richterite solid solutions. Physics and Chemistry of Minerals, 27, 301309.CrossRefGoogle Scholar
Bruker, (2003) SAINT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Burke, E.A. and Leake, B.E. (2004) “Named amphiboles”: a new category of amphiboles recognized by the International Mineralogical Association (IMA), and the proper order of prefixes to be used in amphibole names. Canadian Mineralogist, 42, 18811884.CrossRefGoogle Scholar
Burns, R.G. and Strens, R.G. (1966) Infrared study of the hydroxyl bands in clinoamphiboles. Science, 153, 890892.CrossRefGoogle ScholarPubMed
Cameron, M. and Gibbs, G.V. (1973) The crystal structure and bonding of fluor-tremolite: A comparison with hydroxyl tremolite. American Mineralogist, 58, 879888.Google Scholar
Dachs, E., Baumgartner, I.A., Bertoldi, C., Benisek, A., Tippelt, G. and Maresch, W.V. (2010) Heat capacity and third-law entropy of kaersutite, pargasite, fluoropargasite, tremolite and fluorotremolite. European Journal of Mineralogy, 22, 319331.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., Cámara, F. and Oberti, R. (2014) Crystal-chemistry and short-range order of fluoro-edenite and fluoro-pargasite: a combined X-ray diffraction and FTIR spectroscopic approach. Mineralogical Magazine, 78, 293310.CrossRefGoogle Scholar
Gunter, M.E., Downs, R.T., Bartelmehs, K.L., Evans, S.H., Pommier, C.J.S., Grow, J.S., Sanchez, M.S. and Bloss, F.D. (2005) Optic properties of centimeter-sized crystals determined in air with the spindle stage using EXCALIBRW. American Mineralogist, 90, 16481654.CrossRefGoogle Scholar
Hawthorne, F.C. and Della Ventura, G. (2007) Short-range order in amphiboles. Pp. 173222 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy & Geochemistry, 67. The Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hawthorne, F.C. and Grundy, H.D. (1976) The crystal chemistry of the amphiboles: IV. X-ray and neutron refinement of the crystal structure of tremolite. Canadian Mineralogist, 14, 334345.Google Scholar
Hawthorne, F.C., Della Ventura, G. and Robert, J.-L. (1996) Short-range order of (Na,K) and Al in tremolite: An infrared study. American Mineralogist, 81, 782784.Google Scholar
Hawthorne, F.C., Welch, M.D., Della Ventura, G., Liu, S., Robert, J.-L. and Jenkins, D.M. (2000) Short-range order in synthetic aluminous tremolites: An infrared and triple-quantum MAS NMR study. American Mineralogist, 85, 17161724.CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J.C. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Höpfner, J.G.A. (1789) I. Uber die Klassifikation der Fossilien in einem Schreiben des Herausgebers an Herrn Dr. Karsten in Halle. II. “Versuch einer neuen Classifikationsmethode der Stein- und Erdarten, nach den neuesten chemischen Erfahrungen”. Magazin für die Naturkunde Helvetiens, 4, 255332.Google Scholar
Ishida, K. (1990) Identification of infrared OH librational bands of talc–willemseite solid solutions and AlIV-free amphiboles through deuteration. Mineralogical Journal, 15, 93104.CrossRefGoogle Scholar
Ishida, K., Jenkins, D.M. and Hawthorne, F.C. (2008) Mid-IR bands of synthetic calcic amphiboles of tremolite-pargasite series and of natural calcic amphiboles. American Mineralogist, 93, 11121118.CrossRefGoogle Scholar
Lazarev, A.N. (1972) Vibrational Spectra and Structure of Silicates. Consultants Bureau, New York, p. 302.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part lV. The compatibility concept and its application. Canadian Mineralogist, 19, 441450.Google Scholar
Oberti, R., Hawthorne, F.C., Cannillo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125172 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A. editors). Reviews in Mineralogy & Geochemistry, 67. The Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Papike, J.J., Ross, M. and Clark, J.R. (1969) Crystal-chemical characterization of clinoamphiboles based on five new structure refinements. Mineralogical Society of America Special Paper, 2, 117136.Google Scholar
Petersen, E.U., Essene, E.J., Peacor, D.R. and Valley, J.W. (1982) Fluorine endmember micas and amphiboles. American Mineralogist, 67, 538544.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ (φρZ) procedure for improved quantitative microanalysis. Pp. 104160 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Robert, J.-L., Della Ventura, G. and Hawthorne, F.C. (1999) Near-infrared study of short-range disorder of OH and F in monoclinic amphiboles. American Mineralogist, 84, 8691.CrossRefGoogle Scholar
Robert, J.-L., Della Ventura, G., Welch, M. and Hawthorne, F.C. (2000) OH-F substitution in synthetic pargasite at 1.5 kbar, 850°C. American Mineralogist, 85, 926931.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Strens, R.G.J. (1974) The common chain, ribbon, and ring silicates. Pp. 305330 in: The Infra-Red Spectra of Minerals (Farmer, V.C., editor). Mineralogical Society, London.CrossRefGoogle Scholar
Su, S.C., Bloss, F.D. and Gunter, M.E. (1978) Procedures and computer programs to refine the double variation method. American Mineralogist, 72, 10111013.Google Scholar
Valley, J.W., Petersen, E.U., Essene, E.J. and Bowman, J.R. (1982) Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C-O-H-F fluid compositions. American Mineralogist, 67, 545557.Google Scholar
Warren, B.E. (1929) The structure of tremolite H2Ca2Mg5(SiO3)8. Zeitschrift für Kristallographie 72, 4257.CrossRefGoogle Scholar
Supplementary material: PDF

Oberti et al. supplementary material

Supplementary Material

Download Oberti et al. supplementary material(PDF)
PDF 214.4 KB