Hostname: page-component-857557d7f7-fn92c Total loading time: 0 Render date: 2025-12-09T23:38:50.369Z Has data issue: false hasContentIssue false

Crystal structure and high-temperature transformation of RbAlGe3O8, a germanium analogue of rubicline, RbAlSi3O8

Published online by Cambridge University Press:  23 January 2025

Liudmila A. Gorelova*
Affiliation:
Saint Petersburg State University, Saint Petersburg, Russia
Maria G. Krzhizhanovskaya
Affiliation:
Saint Petersburg State University, Saint Petersburg, Russia
Valentina A. Yukhno
Affiliation:
Saint Petersburg State University, Saint Petersburg, Russia
Olga Yu. Shorets
Affiliation:
Institute of Silicate Chemistry, Saint Petersburg, Russia
Oleg S. Vereshchagin
Affiliation:
Saint Petersburg State University, Saint Petersburg, Russia
*
Corresponding author: Liudmila Gorelova; Email: l.gorelova@spbu.ru

Abstract

Rubicline, RbAlSi3O8, is one of three known minerals containing essential rubidium and a geochemically significant member of the feldspar family. In the course of current work, RbAlGe3O8 (germanium analogue of rubicline) was grown hydrothermally via the formation of leucite-like RbAlGe2O6 as an intermediate phase. The crystal structure of RbAlGe3O8 was determined for the first time by direct methods from single crystal X-ray diffraction data and refined to R1 = 0.0528. It has monoclinic symmetry (space group C2/m, a = 9.1237(9), b = 13.5679(6), c = 7.4677(4) Å, β = 116.687(6)° and V = 825.95(11) Å3), with cell parameters typical for disordered feldspars. According to the high-temperature study, feldspar-like RbAlGe3O8 irreversibly transforms into the leucite-like phase RbAlGe2O6 at 1050°C. The thermal expansion of studied material displays a small negative change along the b axis. Its volume thermal expansion, fitted according to a linear model between 30 and 840°C (αV = 20.3(1) ×10–6 °C–1), is slightly higher than that of other feldspar-related compounds with essential rubidium.

Information

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Associate Editor: G. Diego Gatta

References

Agilent (2012) CrysAlis PRO. Agilent Technologies, Oxfordshire, UK.Google Scholar
Ahrens, T.J., Petersen, C.F. and Rosenberg, J.T. (1969) Shock compression of feldspars. Journal of Geophysical Research, 74, 27272746.10.1029/JB074i010p02727CrossRefGoogle Scholar
Angel, R.J. (1994) Feldspars at high pressure. Pp. 271312 in: Feldspars and Their Reactions (Parsons, I., editor). Springer, Dordrecht.10.1007/978-94-011-1106-5_7CrossRefGoogle Scholar
Angel, R.J., Sochalski-Kolbus, L.N. and Tribaudino, M. (2012) Tilts and tetrahedra: The origin of the anisotropy of feldspars. American Mineralogist, 97, 765778.10.2138/am.2012.4011CrossRefGoogle Scholar
Appiah, M., Yang, Y., Ullah, B., Xiao, Y., Stavrou, E., Zhang, Q. and Tan, D.Q. (2024) Phase structural characteristics and microwave dielectric properties of Ge-doped cordierite-based ceramics. Materials Research Bulletin, 179, 112939.10.1016/j.materresbull.2024.112939CrossRefGoogle Scholar
Baronas, J.J., Torres, M.A., West, A.J., Rouxel, O., Georg, B., Bouchez, J., Gaillardet, J. and Hammond, D.E. (2018) Ge and Si isotope signatures in rivers: A quantitative multi-proxy approach. Earth and Planetary Science Letters, 503, 194215.10.1016/j.epsl.2018.09.022CrossRefGoogle Scholar
Barrer, R.M. and Baynham, J.W. (1956) The hydrothermal chemistry of the silicates. Part VII. Synthetic potassium aluminosilicates. Journal of the Chemical Society (Resumed), 1956, 28822891.10.1039/jr9560002882CrossRefGoogle Scholar
Barrer, R.M. and McCallum, N. (1953) Hydrothermal chemistry of silicates. Part IV. Rubidium and cœsium aluminosilicates. Journal of the Chemical Society (Resumed), 1953, 40294035.10.1039/JR9530004029CrossRefGoogle Scholar
Bell, A.M.T. (2024) Crystal structures and X-ray powder diffraction data for AAlGe2O6 synthetic leucite analogs (A = K, Rb, Cs). Powder Diffraction, 39, 162169.10.1017/S088571562400023XCrossRefGoogle Scholar
Bernstein, L.R. (1985) Germanium geochemistry and mineralogy. Geochimica et Cosmochimica Acta, 49, 24092422.10.1016/0016-7037(85)90241-8CrossRefGoogle Scholar
Bokiy, G.B. and Borutzky, B.Y. (2003) Minerals. Vol.5: Silicates with interrupted framework, feldspar minerals. Nauka, Moscow, 583 pp.Google Scholar
Breck, D.W. (1974) Zeolite Molecular Sieves: Structure, Chemistry and Use. John Wiley, New York, 771 pp.Google Scholar
Brown, L.B., Openshaw, R.E., McMillan, P.F. and Henderson, C.M.B (1984) A review of the expansion of alkali feldspars: coupled variations in cell parameters and possible phase transitions. American Mineralogist, 69, 10581071.Google Scholar
Bruno, E. and Pentinghaus, H. (1974) Substitutions of cations in natural and synthetic feldspars. Pp. 574610 in: The Feldspars (Mackenzie, W.S. and Zussmann, J., editors). Manchester University Press, Manchester, UK.Google Scholar
Bubnova, R.S., Firsova, V.A. and Filatov, S. (2013) Software for determining the thermal expansion tensor and the graphic representation of its characteristic surface (Theta to Tensor-TTT). Glass Physics and Chemistry, 39, 347350.10.1134/S108765961303005XCrossRefGoogle Scholar
Butterman, W.C. and Reese, R.G.J. (2003) Mineral Commodity Profiles – Rubidium. Version 1. 11 pp.Google Scholar
Carter, B.C. and Norton, G.M. (2008) Ceramic Materials. Springer, New York.Google Scholar
Cheng, C.H., Juttu, G., Mitchell, S.F. and Shantz, D.F. (2006) Synthesis, characterization, and growth rates of germanium silicalite-1 grown from clear solutions. Journal of Physical Chemistry B, 110, 2143021437.10.1021/jp063852fCrossRefGoogle ScholarPubMed
Christy, A.G. (2015) Causes of anomalous mineralogical diversity in the Periodic Table. Mineralogical Magazine, 79, 3349.10.1180/minmag.2015.079.1.04CrossRefGoogle Scholar
Colville, A.A. and Ribbe, P.H. (1968) The crystal structure of an adularia and a refinement of the structure of orthoclase. American Mineralogist, 53, 2537.Google Scholar
Corma, A., Martín-Aranda, R.M. and Sánchez, F. (1990) Zeolites as base catalysts: Condensation of benzaldehyde derivatives with activated methylenic compounds on Germanium-substituted faujasite. Journal of Catalysis, 126, 192198.10.1016/0021-9517(90)90057-QCrossRefGoogle Scholar
De Argollo, R. and Schilling, J.G. (1978) Ge-Si and Ga-Al fractionation in Hawaiian volcanic rocks. Geochimica et Cosmochimica Acta, 42, 623630.10.1016/0016-7037(78)90007-8CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zusmann, J. (2001) Rock-Forming Minerals. Vol. 4A. Framework Silicates: Feldspars. The Geological Society, London, 973 pp.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (2013) An Introduction to the Rock-Forming Minerals, 3d ed. Mineralogical Society of Great Britain and Ireland, UK, 696 pp.10.1180/DHZCrossRefGoogle Scholar
Derkacheva, E.S., Krzhizhanovskaya, M.G. and Bubnova, R.S. (2017) Thermal behavior of reedmergnerite NaBSi3O8 and searlesite NaBSi2O5(OH)2. Glass Physics and Chemistry, 43, 459463.10.1134/S1087659617050030CrossRefGoogle Scholar
Dinnebier, R.E., Leineweber, A. and Evans, J.S.O. (2019) Rietveld Refinement: Practical Powder Diffraction Pattern Analysis using TOPAS. De Gruyter, Berlin, Boston, USA, 331 pp.Google Scholar
Ferguson, R.B., Ball, N.A. and Cerny, P. (1991) Structure refinement of an adularian end-member high sanidine from the Buck Claim pegmatite, Bernic Lake, Manitoba. The Canadian Mineralogist, 29, 543552.Google Scholar
Filatov, S.K. (1971) Anomale Wärmeausdehnung von V2O5. Crystal Research and Technology, 6, 777785 [in German].10.1002/crat.19710060608CrossRefGoogle Scholar
Filatov, S.K. (1990) High-Temperature Crystal Chemistry. Nedra, Leningrad, Russia [in Russian].Google Scholar
Froelich, P.N., Blanc, V., Mortlock, R.A., Chillrud, S.N., Dunstan, W., Udomkit, A. and Peng, T.-H. (1992) River fluxes of dissolved silica to the ocean were higher during glacials: Ge/Si in diatoms, rivers, and oceans. Paleoceanography, 7, 739767.10.1029/92PA02090CrossRefGoogle Scholar
Fuertes, V., Reinosa, J.J., Fernandez, J.F., and Enriquez, E. (2022) Engineered feldspar-based ceramics: A review of their potential in ceramic industry. Journal of the European Ceramics Society, 42, 307326.10.1016/j.jeurceramsoc.2021.10.017CrossRefGoogle Scholar
Gasperin, M. (1971) Structure cristalline de RbAlSi3O8. Acta Crystallographica, 27, 854855.10.1107/S0567740871003078CrossRefGoogle Scholar
Ghelis, M. and Gasperin, M. (1970) Evolution des parametres dans le systeme KalSi3O8–RbAlSi3O8. Comptes rendus de l’Académie des Sciences, 271, 19281929 [in French].Google Scholar
Goldschmidt, V.M. (1926) Über das krystallochemische und geochemische Verhalten des Germaniums. Naturwissenschaften, 14, 295297 [in German].10.1007/BF01503585CrossRefGoogle Scholar
Goldschmidt, V.M. (1958) Geochemistry. Oxford University Press, London, 425 pp.Google Scholar
Gorelova, L.A. (2023) Phase transformations in feldspar group minerals with paracelsian topology under high temperature and high pressure. Russian Geology and Geophysics, 64, 950961.10.2113/RGG20234557CrossRefGoogle Scholar
Gorelova, L.A., Filatov, S.K., Krzhizhanovskaya, M.G. and Bubnova, R.S. (2015) High-temperature behavior of danburite-like borosilicates MB2Si2O8 (M = Ca, Sr, Ba). Physics and Chemistry of Glasses, 56, 189196.Google Scholar
Gorelova, L.A., Vereshchagin, O.S., Bocharov, V.N., Potekhina, N.V., Zhitova, E.S. and Pekov, I.V. (2024) Thermal behaviour of filatovite – a rare aluminoarsenate mineral of the feldspar group. Mineralogical Magazine, 88, 176184.10.1180/mgm.2024.10CrossRefGoogle Scholar
Greenwood, N.N. and Earnshaw, A. (1998) Lithium, sodium, potassium, rubidium, caesium and francium. P. 341 in: Chemistry of the elements (2d ed.), Chapter 4. Butterworth-Heinemann, Oxford, United Kingdom.Google Scholar
Grove, T. and Ito, J. (1973) High temperature displacive transformations in synthetic feldspar. Transactions of the American Geophysical Union, 54, 499.Google Scholar
Helliwell, M., Kaučič, V., Cheetham, G.M.T., Harding, M.M., Kariuki, B.M. and Rizkallah, P.J. (1993) Structure determination from small crystals of two aluminophosphates CrAPO‐14 and SAPO‐43. Acta Crystallographica Section B, B49, 413420.10.1107/S0108768192009005CrossRefGoogle Scholar
Henderson, C.M.B. (1978) The thermal expansion of synthetic aluminosilicate-sodalites, M8(Al6Si6O24)X2. Physics and Chemistry of Minerals, 2, 337347.10.1007/BF00307576CrossRefGoogle Scholar
Henderson, C.M.B. (2021) Composition, thermal expansion and phase transitions in framework silicates: revisitation and review of natural and synthetic analogues of nepheline-, feldspar- and leucite-mineral groups. Solids, 2, 149.10.3390/solids2010001CrossRefGoogle Scholar
Henderson, C.M.B., Bell, A.M.T. and Knight, K.S. (2017) Variable stoichiometry in tectosilicates having the leucite/pollucite-type structure with particular emphasis on modelling the interframework cavity cation environment. Journal of Solid State Chemistry, 251, 90104.10.1016/j.jssc.2017.04.013CrossRefGoogle Scholar
Hovis, G.L., Morabito, J.R., Spooner, A., Mott, A., Person, E.L., Henderson, C.M.B., Roux, J. and Harlov, D. (2008) A simple predictive model for the thermal expansion of AlSi3 feldspars. American Mineralogist, 93, 15681573.10.2138/am.2008.2793CrossRefGoogle Scholar
Kimata, M., Saito, S. and Shimizu, M. (1995) Structure of sanidine-type KGaSi3O8: Tetrahedral-site disordering in potassium feldspar. European Journal of Mineralogy, 7, 287294.10.1127/ejm/7/2/0287CrossRefGoogle Scholar
Kimball, M.R. and Megaw, H.D. (1974) Interim report on the crystal structure of buddingtonite. Pp. 8186 in: The Feldspars. Proceedings of the NATO ASI on Feldspars (MacKenzie, W.S. and Zussman, J., editors). Manchester University Press, Manchester.Google Scholar
Kinomura, N., Koizumi, M. and Kume, S. (1971) Germanate alkali feldspars under pressure. Journal of Geophysical Research, 76, 20352037.10.1029/JB076i008p02035CrossRefGoogle Scholar
Kirkpatrick, R.J., Klein, L., Uhlmann, D.R. and Hays, J.F. (1979) Rates and processes of crystal growth in the system anorthite‐albite. Journal of Geophysical Research: Solid Earth, 84, 36713676.10.1029/JB084iB07p03671CrossRefGoogle Scholar
Kivlighn, H.D. (1966) Solid state reactivity and glass crystallization behavior of some alkali aluminogermanates. Journal of the American Ceramic Society, 49, 148151.10.1111/j.1151-2916.1966.tb15393.xCrossRefGoogle Scholar
Kovalev, V.N., Spivak, A.V., Setkova, T.V., Ksenofontov, D.A., Volkova, E.A., Korepanov, V.I., Balitsky, V.S. and Zakharchenko, E.S. (2024) High-pressure Raman spectroscopy study of α-quartz-like Si1-xGexO2 solid solution. Journal of Physics and Chemistry of Solids, 185, 111749.10.1016/j.jpcs.2023.111749CrossRefGoogle Scholar
Kovalskii, A.M., Kotel’nikov, A.R., Bychkov, A.M., Chichagov, A.V. and Samokhvalova, O.L. (2000) Synthesis and X-ray diffraction study of (K, Rb)-feldspar solid solution: preliminary data. Geochemistry International, 38, 220224.Google Scholar
Krivovichev, S. V. (2020) Feldspar polymorphs: diversity, complexity, stability. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 149, 1666.10.31857/S0869605520040036CrossRefGoogle Scholar
Kroll, H., Floegel, J., Breit, U., Loens, J. and Pentinghaus, H. (1991) Order and anti-order in Ge-substituted alkali feldspars. European Journal of Mineralogy, 3, 739749.10.1127/ejm/3/5/0739CrossRefGoogle Scholar
Kroll, H. and Ribbe, P. (1987) Determining (Al,Si) distribution and strain in alkali feldspars using lattice parameters and diffraction-peak positions; a review. American Mineralogist, 72, 491506.Google Scholar
Krzhizhanovskaya, M.G., Bubnova, R.S., Depmeier, W., Rahmoun, N.S., Filatov, S.K. and Ugolkov, V.L. (2012) A new borosilicate feldspar, KBSi3O8: synthesis, crystal structure and thermal behavior. Zeitschrift fur Kristallographie – Crystalline Materials, 227, 446451.10.1524/zkri.2012.1467CrossRefGoogle Scholar
Kume, S., Matsumoto, T. and Koizumi, M. (1966) Dense form of germanate orthoclase (KAlGe3O8). Journal of Geophysical Research, 71, 49995000.10.1029/JZ071i020p04999CrossRefGoogle Scholar
Kume, S., Ueda, S. and Koizumi, M. (1969) Synthesis and phase change of germanate albite under pressures. Journal of Geophysical Research, 74, 21452147.10.1029/JB074i008p02145CrossRefGoogle Scholar
Kurtz, A.C., Derry, L.A. and Chadwick, O.A. (2002) Germanium-silicon fractionation in the weathering environment. Geochimica et Cosmochimica Acta, 66, 15251537.10.1016/S0016-7037(01)00869-9CrossRefGoogle Scholar
Kyono, A. and Kimata, M. (2001) Refinement of the crystal structure of a synthetic non-stoichiometric Rb-feldspar. Mineralogical Magazine, 65, 523531.10.1180/002646101750377542CrossRefGoogle Scholar
Lerot, L., Poncelet, G. and Fripiat, J.J. (1975) Surface and some catalytic properties of a germanic near-faujasite molecular sieve. Journal of Solid State Chemistry, 12, 283287.10.1016/0022-4596(75)90321-7CrossRefGoogle Scholar
Li, H. and Yaghi, O.M. (1998) Transformation of germanium dioxide to microporous germanate 4-connected nets. Journal of the American Chemical Society, 120, 1056910570.10.1021/ja982384nCrossRefGoogle Scholar
Liu, C., Komarneni, S. and Roy, R. (1994) Seeding effects on crystallization of KAlSi3O8, RbAlSi3O8, and CsAlSi3O8 gels and glasses. Journal of the American Ceramic Society, 77, 31053112.10.1111/j.1151-2916.1994.tb04556.xCrossRefGoogle Scholar
McMillan, P.F., Brown, W.L. and Openshaw, R.E. (1980) The unit-cell parameters of an ordered K-Rb alkali feldspar series. American Mineralogist, 65, 458464.Google Scholar
McMillan, P.W. (1979) Glass-ceramics. Academic Press International, London - New York, 285 pp.Google Scholar
Megaw, H.D. (1974) The architecture of feldspars. Pp. 224 in: The Feldspars (MacKenzie, W.S. and Zussman, J., editors). Manchester University Press, Manchester, UK.Google Scholar
Momma, K., and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.10.1107/S0021889811038970CrossRefGoogle Scholar
Mortlock, R.A. and Frohlich, P.N. (1987) Continental weathering of germanium: Ge/Si in the global river discharge. Geochimica et Cosmochimica Acta, 51, 20752082.10.1016/0016-7037(87)90257-2CrossRefGoogle Scholar
Murnane, R.J. and Stallard, R.F. (1990) Germanium and silicon in rivers of the Orinoco drainage basin. Nature, 344, 749752.10.1038/344749a0CrossRefGoogle Scholar
Ohtake, M., Matsunaga, T., Haruyama, J., Yokota, Y., Morota, T., Honda, C., Ogawa, Y., Torii, M., Miyamoto, H., Arai, T., Hirata, N., Iwasaki, A., Nakamura, R., Hiroi, T., Sugihara, T., Takeda, H., Otake, H., Pieters, C.M., Saiki, K., Kitazato, K., Abe, M., Asada, N., Demura, H., Yamaguchi, Y., Sasaki, S., Kodama, S., Terazono, J., Shirao, M., Yamaji, A., Minami, S., Akiyama, H. and Josset, J.L. (2009) The global distribution of pure anorthosite on the Moon. Nature, 461, 236240.10.1038/nature08317CrossRefGoogle ScholarPubMed
O’Keeffe, M. and O.M, Yaghi. (1999) Germanate Zeolites: Contrasting the Behavior of Germanate and Silicate Structures Built from Cubic T8O20 Units (T=Ge or Si). Chemistry – A European Journal, 5, 27962801.10.1002/(SICI)1521-3765(19991001)5:10<2796::AID-CHEM2796>3.0.CO;2-63.0.CO;2-6>CrossRefGoogle Scholar
Pasero, M. (2025) The New IMA List of Minerals. International Mineralogical Association. Commission on new minerals, nomenclature and classification (IMA-CNMNC). http://cnmnc.units.it/Google Scholar
Pekov, I.V., Kononkova, N.N., Agakhanov, A.A., Belakovskiy, D.I., Kazantsev, S.S. and Zubkova, N.V. (2009) Voloshinite, a new rubidium mica from granite pegmatites of Voron’i Tundras (Kola Peninsula). Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, 138, 90100 [in Russian].Google Scholar
Pentinghaus, H. and Bambauer, H. (1971) Substitution of Al(III), Ga(III), Fe(III), Si(IV) and Ge(IV) in synthetic alkali feldspars. Neues Jahrbuch für Mineralogie – Monatshefte, 1971, 416418.Google Scholar
Rainer, T., Paul, D. and Hahn, A. (2008) Ramanite-(Cs) and ramanite-(Rb): New cesium and rubidium pentaborate tetrahydrate minerals identified with Raman spectroscopy. American Mineralogist, 93, 10341042.Google Scholar
Ralph, J., Von Bargen, D., Martynov, P., Zhang, J., Que, X., Prabhu, A., Morrison, S.M., Li, W., Chen, W. and Ma, X. (2024) Mindat.org: The open access mineralogy database to accelerate data-intensive geoscience research. American Mineralogist, 110, 833844. https://doi.org/10.2138/am-2024-9486.CrossRefGoogle Scholar
Ringwood, A.E., Reid, A.F. and Wadsley, A.D. (1967) High pressure transformation of alkali aluminosilicates and aluminogermanates. Earth and Planetary Science Letters, 50, 3840.10.1016/0012-821X(67)90008-8CrossRefGoogle Scholar
Schairer, J.F. and Bowen, N.L. (1955) The system K2O-Al2O3-SiO2. American Journal of Science, 253, 681746.10.2475/ajs.253.12.681CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.10.1107/S0567739476001551CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.10.1107/S0108767307043930CrossRefGoogle Scholar
Silva, A.C., Carolina, S.D., Sousa, D.N. and Silva, E.M.S. (2019) Feldspar production from dimension stone tailings for application in the ceramic industry. Journal of Materials Research and Technology, 8, 17.10.1016/j.jmrt.2018.02.011CrossRefGoogle Scholar
Smith, J.V. (1958) Further discussion of framework structures formed from parallel four-and eight-membered rings. Mineralogical Magazine, 33, 202212.10.1180/minmag.1962.033.258.03CrossRefGoogle Scholar
Smith, J.V. (1974) Feldspar Minerals. I. Crystal Structure and Physical Properties. Springer-Verlag, Berlin, 627 pp.Google Scholar
Smith, J.V. and Brown, W.L. (1988) Feldspar Minerals. Volume 1 Crystal Structures, Physical, Chemical, and Microtextural Properties. Springer Verlag, Berlin – Heidelberg, 828 pp.Google Scholar
Solodov, N.A., Balashov, L.S. and Kremenetsky, A.A. (1980) Geochemistry of Lithium, Rubidium, and Cesium. Nedra, Moscow, 234 [in Russian].Google Scholar
Suzuki, R., Takahashi, Y., Iwasaki, K., Terakado, N. and Fujiwara, T. (2015) High thermal stability of red emission in Mn-doped benitoite-type strontium silicogermanate. Applied Physics Express, 8, 72603.10.7567/APEX.8.072603CrossRefGoogle Scholar
Taylor, M. and Brown, G.E. (1979) Structure of mineral glasses-I. The feldspar glasses NaAlSi3O8, KAlSi3O8, CaAl2Si2O8. Geochimica et Cosmochimica Acta, 43, 6175.10.1016/0016-7037(79)90047-4CrossRefGoogle Scholar
Teertstra, D.K., Černý, P. and Hawthorne, F.C. (1997) Rubidium-rich feldspars in a granitic pegmatite from the Kola Peninsula, Russia. The Canadian Mineralogist, 35, 12771281.Google Scholar
Teertstra, D.K., Černý, P. and Hawthorne, F.C. (1998b) Rubidium-rich feldspars and associated minerals from the Luolamaki pegmatite, Somero, Finland. Bulletin of the Geological Society of Finland, 70, 4349.10.17741/bgsf/70.1-2.003CrossRefGoogle Scholar
Teertstra, D.K., Černý, P. and Hawthorne, F.C. (1998c) Rubidium feldspars in granitic pegmatites. The Canadian Mineralogist, 36, 483496.Google Scholar
Teertstra, D.K., Černý, P. and Hawthorne, F.C. (1999a) Geochemistry and petrology of late K-and Rb-feldspars in the Rubellite pegmatite, Lilypad Lakes, NW Ontario. Mineralogy and Petrology, 65, 237247.10.1007/BF01161962CrossRefGoogle Scholar
Teertstra, D.K., Černý, P. and Hawthorne, F.C. (1999b) Subsolidus rubidium-dominant feldspar from the Morrua pegmatite, Mozambique: paragenesis and composition. Mineralogical Magazine, 63, 313320.10.1180/002646199548538CrossRefGoogle Scholar
Teertstra, D.K., Černý, P., Hawthorne, F.C., Pier, J., Wang, L.M. and Ewing, R.C. (1998a) Rubicline, a new feldspar from San Piero in Campo, Elba, Italy. American Mineralogist, 83, 13351339.10.2138/am-1998-11-1223CrossRefGoogle Scholar
Terry, R.J., Vinton, D., McMillen, C.D., Chen, X., Zhu, L. and Kolis, J.W. (2022) Hydrothermal single crystal growth and structural investigation of the stuffed tridymite family as NLO materials. Journal of Alloys and Compounds, 909, 164634.10.1016/j.jallcom.2022.164634CrossRefGoogle Scholar
Torres-Martinez, L.M. and A.R, West. (1989) Pollucite- and leucite-related phases: A2BX5O12 and ACX2O6 (A = K, Rb, Cs; B = Be, Mg, Fe, Co, Ni, Cu, Zn, Cd; C = B, Al, Ga, Fe, Cr; X = Si, Ge). Zeitschrift für anorganische und allgemeine chemie, 573, 223230.10.1002/zaac.19895730123CrossRefGoogle Scholar
Tribaudino, M., Angel, R.J., Camara, F., Nestola, F., Pasqual, D. and Margiolaki, I. (2010) Thermal expansion of plagioclase feldspars. Contributions to Mineralogy and Petrology, 160, 899908.10.1007/s00410-010-0513-3CrossRefGoogle Scholar
Tribaudino, M., Bruno, M., Nestola, F., Pasqual, D. and Angel, R.J. (2011) Thermoelastic and thermodynamic properties of plagioclase feldspars from thermal expansion measurements. American Mineralogist, 96, 9921002.10.2138/am.2011.3722CrossRefGoogle Scholar
Tripathi, A. and Parise, J.B. (2002) Hydrothermal synthesis and structural characterization of the aluminogermanate analogues of JBW, montesommaite, analcime and paracelsian. Microporous and Mesoporous Materials, 52, 6578.10.1016/S1387-1811(02)00270-6CrossRefGoogle Scholar
Vadawale, S.V., N.P.S, Mithun, Shanmugam, M., Basu Sarbadhikari, A., Sinha, R.K., Bhatt, M., Vijayan, S., Srivastava, N., Shukla, A.D., S.V.S, Murty et al. (2024) Chandrayaan–3 APXS elemental abundance measurements at lunar high latitude. Nature, 633, 327331.10.1038/s41586-024-07870-7CrossRefGoogle ScholarPubMed
Voncken, J. (1996) Crystal morphology and X-ray powder diffraction of the Rb-analogue of high sanidine RbAlSi3O8. Neues Jahrbuch für Mineralogie – Monatshefte, 1, 1016.Google Scholar
Wietze, R. and Wiswanathan, K. (1971) Rubidium-plagioklas durch kationenaustauch. Fortschritte der Mineralogie, 49, 63 [in German].Google Scholar
Winter, J.K., Ghose, S. and Okamura, F.P. (1977) A high-temperature study of the thermal expansion and the anisotropy of the sodium atom in low albite. American Mineralogist, 62, 921931.Google Scholar
Winter, J.K., Okamura, F.P. and Ghose, S. (1979) A high-temperature structural study of high albite, monalbite, and the analbite-monalbite phase transition. American Mineralogist, 64, 409423.Google Scholar
Xing, P., Wang, C., Ma, B., Wang, L., Zhang, W. and Chen, Y. (2018) Rubidium and Potassium Extraction from Granitic Rubidium Ore: Process Optimization and Mechanism Study. ACS Sustainable Chemistry and Engineering, 6, 49224930.10.1021/acssuschemeng.7b04445CrossRefGoogle Scholar
Zhang, L., Mei, H., Rao, Z., Shu, L. and Li, C. (2022) Lowered sintering temperature and modulated microwave dielectric properties in Mg2SiO4 forsterite via Ge substitution. Journal of Materials Science: Materials in Electronics, 33, 1018310193.Google Scholar
Zhang, Y., Hu, Y., Sun, N., Jiu, R., Wang, Z., Wang, L. and Sun, W. (2018) Systematic review of feldspar beneficiation and its comprehensive application. Minerals Engineering, 128, 141152.10.1016/j.mineng.2018.08.043CrossRefGoogle Scholar
Supplementary material: File

Gorelova et al. supplementary material 1

Gorelova et al. supplementary material
Download Gorelova et al. supplementary material 1(File)
File 270.3 KB
Supplementary material: File

Gorelova et al. supplementary material 2

Gorelova et al. supplementary material
Download Gorelova et al. supplementary material 2(File)
File 90.8 KB
Supplementary material: File

Gorelova et al. supplementary material 3

Gorelova et al. supplementary material
Download Gorelova et al. supplementary material 3(File)
File 20.3 KB