Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T22:19:50.312Z Has data issue: false hasContentIssue false

Bohseite, ideally Ca4Be4Si9O24(OH4, from the Piława Górna quarry, the Góry Sowie Block, SW Poland

Published online by Cambridge University Press:  02 January 2018

E. Szełęg
Affiliation:
Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
B. Zuzens
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
F. C. Hawthorne*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
A. Pieczka
Affiliation:
Department of Mineralogy, Petrography and Geochemistry, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland
A. Szuszkiewicz
Affiliation:
University of Wrocław, Institute of Geological Sciences, Cybulskiego 30, 50-205 Wrocław, Poland
K. Turniak
Affiliation:
University of Wrocław, Institute of Geological Sciences, Cybulskiego 30, 50-205 Wrocław, Poland
K. Nejbert
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Żwirki and Wigury 93, 02-089 Warszawa, Poland
S. S. Ilnicki
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, University of Warsaw, Żwirki and Wigury 93, 02-089 Warszawa, Poland
H. Friis
Affiliation:
Natural History Museum, University of Oslo, Postboks 1172, Blindern, 0318 Oslo, Norway
E. Makovicky
Affiliation:
Department of Geosciences and Natural Resources, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg, Denmark
M. T. Weller
Affiliation:
Department of Chemistry, University of Bath, Bath BA2 7AY, UK
M.-H. Lemée-Cailleau
Affiliation:
Institut Laue-Langevin, B.P.156, 6 rue Jules Horowitz, 38042 Grenoble Cedex 9, France

Abstract

Bohseite is an orthorhombic calcium beryllium aluminosilicate with variable Al content and an endmember formula Ca4Be4Si9O24(OH4), that was discovered in the Piława Górna quarry in the eastern part of the Góry Sowie Block, ∼50 km southwest of Wrocław, SW Poland. It occurs in a zoned anatectic pegmatite dyke in close association with microcline, Cs-rich beryl, phenakite, helvite, 'lepidolite', probably bertrandite and unidentified Be-containing mica as alteration products after a primary Be mineral, probably beryl. Bohseite forms fan-like or parallel aggregates (up to 0.7 cm) of white, platy crystals (up to 2 mm long) with characteristic striations. It is white with a white streak, is translucent and has a vitreous lustre; it does not fluoresce under ultraviolet light. The cleavage is perfect on {001} and fair on {010}, and neither parting nor twinning was observed. Bohseite is brittle with a splintery fracture and Mohs hardness is 5–6. The calculated density is 2.719 g cm–3. The indices of refraction are α= 1.579, β = 1.580,γ = 1.597, all ±0.002; 2Vobs = 24(3)°, 2Vcalc = 27°; the optic orientation is as follows: X ^ a = 16.1°, Y ^ b = 16.1°, Z // c Bohseite shows orthorhombic diffraction symmetry, space group Cmcm, a = 23.204(6), b = 4.9442(9), c = 19.418(6) Å, V = 2227.7(4) Å3, Z = 4. The crystal structure was refined to an R1 value of 2.17% based on single-crystal data, and the chemical composition was determined by electron-microprobe analysis. Bohseite is isostructural with bavenite. Bohseite was originally approved with an end-member composition of Ca4Be3AlSi9O25(OH)3, but subsequent discovery of compositions with Be > 3.0 apfu led to redefinition of its end-member composition, holotype sample and locality, as reported here. There is extensive solid solution in bavenite–bohseite according to the scheme O(2)OH + T(4)Si4+ + T(3)Be2+O(2)O2– + T(4)Al3++ T(3)Si4+, and a general formula for the bavenite–bohseite minerals may be written as Ca4BexSi9Al4–xO28–x(OH)x, where x ranges from 2–4 apfu: Ca4Be2Si9Al2O26(OH)2 (bavenite) to Ca4Be4Si9O24(OH)4 (bohseite).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Armstrong, J.A., Friis, H., Lieb, A., Finch, A.A. and Weller, M.T. (2010) Combined single-crystal X-ray and neutron powder diffraction structure analysis exemplified through full structure determinations of framework and layer beryllate minerals. American Mineralogist, 95, 519526.CrossRefGoogle Scholar
Bartelmehs, K.L., Bloss, F.D., Downs, R.T. and Birch, J. B (1992) ExcalibrII. Zeitschriftfür Kristallographie, 199, 186196.Google Scholar
Berry, L.G. (1963) Composition of bavenite. American Mineralogist, 48, 11661168.Google Scholar
Beus, A.A. (1966) Geochemistry of Beryllium and Genetic Types of Beryllium Deposits. W.H. Freeman and Co., San Francisco, California, USA.Google Scholar
Bondi, M., Griffin, W.L., Mattioli, V. and Mottana, A. (1983) Chiavennite, CaMnBe2Si5O13(OH)2.2H2O, a new mineral from Chiavenna (Italy). American Mineralogist, 68, 623627.Google Scholar
Cannillo, E., Coda, A. and Fagani, G. (1966) The crystal structure of bavenite. Acta Crystallographica, 20, 301309.CrossRefGoogle Scholar
Černý, P. (1968) Alteration of beryl in pegmatites; the process and its products. Neues Jahrbuch für Mineralogie Abhandlungen, 108, 166180.Google Scholar
Černý, P. (2002) Mineralogy of beryllium in granitic pegmatites. Pp. 405-144 in: Beryllium: Mineralogy, Petrology, and Geochemistry (E.S. Grew, editor). Reviews in Mineralogy & Geochemistry, 50. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.Google Scholar
Friis, H., Makovicky, E., Weller, M.T. and Lemée-Cailleau, M.-H. (2010) Bohseite, IMA 2010-026. CNMNC Newsletter, 2010, page 800; Mineralogical Magazine, 74, 797800.Google Scholar
Hawthorne, F.C. and Huminicki, D.M.C. (2002) The crystal chemistry of beryllium. Pp. 333-403 in: Beryllium: Mineralogy, Petrology, and Geochemistry (E.S. Grew, editor). Reviews in Mineralogy & Geochemistry, 50. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995) Site populations in minerals: terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Kharitonov, Yu.A., Kuz'min, E.A., Ilyukhin, V.V. and Belov, N.V (1971) The crystal structure of bavenite. Journal of Structural Chemistry, 12, 7276.CrossRefGoogle Scholar
Lussier, A.J. and Hawthorne, F.C. (2011) Short-range constraints on chemical and structural variations in bavenite. Mineralogical Magazine, 75, 213239.CrossRefGoogle Scholar
Petersen, O.V., Micheelsen, H.I. and Leonardsen, E.S. (1995) Bavenite, Ca4Be3Al[Si9O25(OH)3], from the Ilímaussaq Alkaline Complex, South Greenland. Neues Jahrbuch für Mineralogie Monatshefte, 7, 321335.Google Scholar
Pieczka, A., Łodzinski, M., Szeteg, E., Ilnicki, S.S., Nejbert, K., Szuszkiewicz, A., Turniak, K., Banach, M., Michałowski, P. and Różniak, R. (2012) The Sowie Mts. pegmatites (Lower Silesia, SW Poland): a current knowledge. Acta Mineralogia-Petrographica, Abstract series, 7, 105106.Google Scholar
Pieczka, A., Szuszkiewicz, A., Szełeg, E., Nejbert, K., Lodzinski, M., Ilnicki, S., Turniak, K., Banach, M., Hołub, W., Michałowski, P. and Różniak, R. (2013) (Fe,Mn)-(Ti,Sn)-(Nb,Ta) oxide assemblage in a little fractionated portion of a mixed (NYF + LCT) pegmatite from Piława Górna, the Sowie Mts. block, SW Poland. Journal of Geosciences, 58, 91112.CrossRefGoogle Scholar
Pieczka, A., Szuszkiewicz, A., Szełeg, E., Ilnicki, Nejbert, K.,S., Turniak, K. (2014) Samarskite-group minerals and alteration products: an example from the Julianna pegmatitic system, Piława Górna, SW Poland. The Canadian Mineralogist, 52, 303319.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Switzer, G. and Reichen, L.E. (1960) Re-examination of pilinite and its identification with bavenite. American Mineralogist, 45, 757762.Google Scholar
Szełeg, E., Szuszkiewicz, A., Pieczka, A., Nejbert, K., Turniak, K., Lodzinski, M. and Ilnicki, S. (2010) Geology of the Julianna pegmatite vein system from the Piława Górna quarry (Dolnośląskie Surowce skalne S.A.), Sowie Mountains Block, SW Poland. Mineralogia — Special Papers, 37, 111.Google Scholar
Szełeg, E., Pieczka, A., Szuszkiewicz, A., Nejbert, K., Turniak, K. and Ilnicki, S. (2013) Anomalous Be-rich bohseite from Julianna pegmatite (Piława Górna, Góry Sowie Block, Lower Silesia, Poland). Mineralogia — Special Papers, 41, 85.Google Scholar
Szuszkiewicz, A., Szełeg, E., Pieczka, A., Ilnicki, S., Nejbert, K., Turniak, K., Banach, M., Lodzinski, M., Różniak, R. and Michałowski, P. (2013) The Julianna pegmatite vein system at the Piława Górna mine, Góry Sowie Block, SW Poland — preliminary data on geology and descriptive mineralogy. Geological Quarterly, 57, 467484.CrossRefGoogle Scholar
Timmermann, H., Parrish, R.R., Noble, S.R. and Kryza, R. (2000) New U-Pb monazite and zircon data from the Sudetes Mountains in SW Poland; evidence for a single-cycle Variscan Orogeny. Journal of the Geological Society, London, 157, 265268.CrossRefGoogle Scholar
Van Breemen, O., Bowes, D.R., Aftalion, M. and Żelazniewicz, A. (1988) Devonian tectonothermal activity in the Sowie Góry gneissic block, Sudetes, southwestern Poland: evidence from Rb—Sr and U—Pb isotopic studies. Journal of the Polish Geological Society, 58, 310.Google Scholar
Supplementary material: File

Szełe¸g et al. supplementary material

Observed and calculated structure factors

Download Szełe¸g et al. supplementary material(File)
File 98.4 KB
Supplementary material: File

Szełe¸g et al. supplementary material

CIF

Download Szełe¸g et al. supplementary material(File)
File 412.1 KB