Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T19:06:33.540Z Has data issue: false hasContentIssue false

Stefanweissite, (Ca,REE)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14, a new zirconolite-related mineral from the Eifel paleovolcanic region, Germany

Published online by Cambridge University Press:  21 January 2019

Nikita V. Chukanov*
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432Russia
Natalia V. Zubkova
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Kosygin str. 19, 119991 Moscow, Russia
Marina F. Vigasina
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Yury S. Polekhovsky
Affiliation:
Institute of Earth Sciences, St Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russia
Bernd Ternes
Affiliation:
Bahnhofstrasse 45, 56727 Mayen, Germany
Willi Schüller
Affiliation:
Im Straußenpesch 22, 53518 Adenau, Germany
Sergey N. Britvin
Affiliation:
Institute of Earth Sciences, St Petersburg State University, Universitetskaya Nab. 7/9, 199034 St Petersburg, Russia Nanomaterials Research Center, Kola Science Centre, Russian Academy of Sciences, Fersman str. 14, 184209 Apatity, Murmansk region, Russia
Dmitry Yu. Pushcharovsky
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
*
*Author for correspondence: Nikita V. Chukanov, Email: chukanov@icp.ac.ru

Abstract

The new mineral stefanweissite, IMA2018-020, was discovered in sanidinite volcanic ejecta from the Laach Lake (Laacher See) paleovolcano, Eifel region, Rhineland-Palatinate, Germany. Associated minerals are sanidine, nosean, biotite, augite, titanite, ferriallanite-(La), magnetite, baddeleyite and a pyrochlore-group mineral. Stefanweissite is brown and reddish-brown, with adamantine lustre; the streak is light brown to yellow. It forms long-prismatic crystals up to 0.03 mm × 0.07 mm × 1.0 mm and acicular crystals up to 2 mm long and 0.02 mm thick typically combined in radiated aggregates in cavities in sanidinite. Dcalc. = 5.254 g/cm3. The mean refractive index calculated from the Gladstone–Dale equation is 2.260. The Raman spectrum shows the absence of hydrogen-bearing groups. The chemical composition is (electron microprobe, wt.%): CaO 7.63, MnO 2.51, FeO 7.86, Al2O3 0.25, La2O3 2.28, Ce2O3 6.54, Pr2O3 1.01, Nd2O3 1.59, ThO2 3.71, UO2 1.09, TiO2 17.32, ZrO2 28.03, HfO2 0.91, Nb2O5 19.96, total 99.69. The empirical formula based on 14 O atoms per formula unit is Ca1.13(Ce0.33La0.12Nd0.08Pr0.05)Σ0.58Th0.12U0.03Mn0.29Fe0.91Al0.04Zr1.89Hf0.04Ti1.80Nb1.19O14. The simplified formula is (Ca,REE)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14. Stefanweissite is orthorhombic, with space group Cmca. The unit-cell parameters are: a = 7.2896(4) Å, b = 14.1435(5) Å, c = 10.1713(4) Å and V = 1048.68(7) Å3. The crystal structure was solved using single-crystal X-ray diffraction data. Stefanweissite is an analogue of zirconolite-3O with Nb dominant over Ti in one of two octahedral sites. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 2.983(100)(202), 2.897(71)(042), 1.828(38)(154, 400, 333), 1.793(25)(244), 1.767(16)(080), 1.517(10)(282), 1.187(19)(483, 1.11.3, 602). Type material is deposited in the collections of the Fersman Mineralogical Museum of the Russian Academy of Sciences, Moscow, Russia, with the registration number 5191/1.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Anthony R Kampf

References

Agilent Technologies (2014) CrysAlisPro, v. 1.171.37.34. Agilent Technologies, Yarnton, Oxfordshire, UK.Google Scholar
Armbruster, T., Bonazzi, P., Akasaka, M., Bermanec, V., Chopin, C., Gieré, R., Heuss- Assbichler, S., Liebscher, A., Menchetti, S., Pan, Yuanming and Pasero, M. (2006) Recommended nomenclature of epidote-group minerals. European Journal of Mineralogy, 18, 551567.Google Scholar
Barinova, T.V., Borovinskaya, I.P., Ratnikov, V.I. and Ignat'eva, T.I. (2008) Self-propagating high-temperature synthesis for immobilization of high-level waste in mineral-like ceramics: 1. Synthesis and study of titanate ceramics based on perovskite and zirconolite. Radiochemistry, 50, 316320.Google Scholar
Bayliss, P., Mazzi, F., Munno, R. and White, T.J. (1989) Mineral nomenclature: zirconolite. Mineralogical Magazine, 53, 565569.Google Scholar
Berzelius, J. (1824) Undersökning af några Mineralier. 2. Polymignit. Kongliga Svenska Vetenskaps-Academiens Handlingar, 338345.Google Scholar
Borodin, L.S., Bykova, A.V., Kapitonova, T.A. and Pyatenko, Y.A. (1960) New data on zirconolite and its new niobian variety. Doklady Akademii Nauk SSSR, 134, 11881192.Google Scholar
Brøgger, W.C. (1890) Die Mineralien der Syenitpegmatitgänge der südnorwegischen Augit und Nephelinsyenite. Zeitschrift für Kristallographie, Speziellen Teil, 16, 1663.Google Scholar
Cámara, F., Oberti, R., Chopin, C. and Medenbach, O. (2006) The arrojadite enigma. I. A new formula and a new model for the arrojadite structure. American Mineralogist, 91, 12491259.Google Scholar
Chopin, C., Oberti, R. and Cámara, F. (2006) The arrojadite enigma. II. Compositional space, new members, and nomenclature of the group. American Mineralogist, 91, 12601270.Google Scholar
Chukanov, N.V., Krivovichev, S.V., Pakhomova, A.S., Pekov, I.V., Schäfer, Ch., Vigasina, M.F. and Van, K.V. (2014) Laachite, (Ca,Mn)2Zr2Nb2TiFeO14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. European Journal of Mineralogy, 26, 103111.Google Scholar
Chukanov, N.V., Zubkova, N.V., Britvin, S.N., Pekov, I.V., Vigasina, M.F., Schäfer, C., Ternes, B., Schüller, W., Ermolaeva, V.N. and Pushcharovsky, D.Y. (2018 a) Nöggerathite-(Ce), (Ce,Ca)2Zr2(Nb,Ti)(Ti,Nb)2Fe2+O14, a new zirconolite-related mineral from the Eifel volcanic region, Germany. Minerals, 8(10), 449; https://doi.org/10.3390/min8100449.Google Scholar
Chukanov, N.V., Zubkova, N.V., Britvin, S.N., Pekov, I.V., Vigasina, M.F., Schäfer, C., Ternes, B., Schüller, W., Ermolaeva, V.N. and Pushcharovsky, D.Y. (2018 b) Nöggerathite-(Ce), IMA 2017-107. CNMNC Newsletter No. 42, April 2018, page 448; Mineralogical Magazine, 82, 445–451.Google Scholar
Chukanov, N.V., Zubkova, N.V., Pekov, I.V., Vigasina, M.F., Polekhovsky, Y.S., Ternes, B., Schüller, W., Britvin, S.N. and Pushcharovsky, D.Y. (2018 c) Stefanweissite, IMA 2018-020. CNMNC Newsletter No. 44, August 2018, page 1016; Mineralogical Magazine, 82, 1015–1021.Google Scholar
Chukhrov, F.V. and Bonshtedt-Kupletskaya, E.M. (1967) Minerals. Nauka, Moscow, volume II(3) [in Russian].Google Scholar
Della Ventura, G., Bellatreccia, F. and Williams, C.T. (2000) Zirconolite with significant REEZrNb(Mn,Fe)O7 from a xenolith of the Laacher See eruptive center, Eifel volcanic region, Germany. The Canadian Mineralogist, 38, 5765.Google Scholar
Donald, I.W., Metcalfe, B.L. and Taylor, R.N.J. (1997) The immobilization of high level radioactive wastes using ceramics and glasses. Journal of Materials Science, 32, 58515887.Google Scholar
Geisler, T., Zhang, M. and Salje, E.K. (2003) Recrystallization of almost fully amorphous zircon under hydrothermal conditions: an infrared spectroscopic study. Journal of Nuclear Materials, 320, 280291.Google Scholar
Hatert, F. and Burke, E.A.J. (2008) The IMA-CNMNC dominant-constituent rule revisited and extended. The Canadian Mineralogist, 46, 717728.Google Scholar
Hawthorne, F.C. and Oberti, R. (2006) On the classification of amphiboles. The Canadian Mineralogist, 44, 121.Google Scholar
Hurai, V., Huraiová, M., Gajdošová, M., Konečný, P., Slobodník, M. and Siegfried, P.R. (2018) Compositional variations of zirconolite from the Evate apatite deposit (Mozambique) as an indicator of magmatic-hydrothermal conditions during post-orogenic collapse of Gondwana. Mineralogy and Petrology, 112, 279296.Google Scholar
Laverov, N.P., Yudintsev, S.V., Stefanovsky, S.V., Omel'yanenko, B.I. and Nikonov, B.S. (2006) Murataite as a universal matrix for immobilization of actinides. Geology of Ore Deposits, 48, 335356.Google Scholar
Litt, T., Brauer, A., Goslar, T., Merk, J., Balaga, K., Mueller, H., Ralska-Jasiewiczowa, M., Stebich, M. and Negendank, J.F.W. (2001) Correlation and synchronisation of Lateglacial continental sequences in northern Central Europe based on annually laminated lacustrine sediments. Pp. 1233–1249 in: Integration of Ice Core, Marine and Terrestrial Records of Termination 1 from the North Atlantic Region. (S. Bjorck, J.J. Lowe and M.J.C. Walker, editors). Quaternary Science Reviews, Vol. 20.Google Scholar
Lumpkin, G.R., Gao, Y., Giere, R., Williams, C.T., Mariano, A.N. and Geisler, T. (2014) The role of Th-U minerals in assessing the performance of nuclear waste forms. Mineralogical Magazine, 78, 10711095.Google Scholar
Mazzi, F. and Munno, R. (1983) Calciobetafite (new mineral of the pyrochlore group) and related minerals from Campi Flegrei, Italy; crystal structures of polymignite and zirkelite: comparison with pyrochlore and zirconolite. American Mineralogist, 68, 262276.Google Scholar
Pasero, M. (2018) The New IMA List of Minerals. http://nrmima.nrm.se/Google Scholar
Pudovkina, Z.V., Chernitzova, N.M. and Pyatenko, Y.A. (1969) Crystallographic study of polymignyte. Zapiski Vsesoiuznogo Mineralogicheskogo Obshchestva, 98, 193199 [in Russian].Google Scholar
Ringwood, A.E. and Kelly, P.M. (1986) Immobilization of high-level waste in ceramic waste forms. Philosophical Transactions of the Royal Society of London A, 319, DOI: 10.1098/rsta.1986.0086.Google Scholar
Salamat, A., McMillan, P.F., Firth, S., Woodhead, K., Hector, A.L., Garbarino, G., Stennett, M.C. and Hyatt, N.C. (2013) Structural transformations and disordering in zirconolite (CaZrTi2O7) at high pressure. Inorganic Chemistry, 52, 15501558.Google Scholar
Schmitt, A.K., Wetzel, F., Cooper, K.M., Zou, H. and Wörner, G. (2010) Magmatic longevity of Laacher See volcano (Eifel, Germany) indicated by U–Th dating of intrusive carbonatites. Journal of Petrology, 51, 10531085.Google Scholar
Williams, C.T. and Gieré, R. (1996) Zirconolite: a review of localities worldwide, and a compilation of its chemical compositions. Bulletin of the Natural History Museum London (Geology), 52, 124.Google Scholar
Zhang, Y., Gregg, D.J., Kong, L., Jovanovich, M. and Triani, G. (2017) Zirconolite glass-ceramics for plutonium immobilization: The effects of processing redox conditions on charge compensation and durability. Journal of Nuclear Materials, 490, 238241.Google Scholar
Zubkova, N.V., Chukanov, N.V., Pekov, I.V., Ternes, B., Schüller, W. and Pushcharovsky, D.Yu. (2018) The crystal structure of nonmetamict Nb-rich zirconolite-3T from the Eifel paleovolcanic region, Germany. Zeitschrift für Kristallografie, 233, 463468.Google Scholar
Supplementary material: File

Chukanov et al. supplementary material

Chukanov et al. supplementary material 1

Download Chukanov et al. supplementary material(File)
File 7 KB