Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T20:06:02.349Z Has data issue: false hasContentIssue false

The oxidation state and distribution of Fe in pumpellyite from the Northern Chichibu Belt in the Hijikawa district, western Shikoku, Japan

Published online by Cambridge University Press:  16 October 2023

Masahide Akasaka*
Affiliation:
Department of Geoscience, Interdisciplinary Graduate School of Science and Engineering, Shimane University, Nishikawatsu 1060, Matsue 690-8504, Japan
Yumi Goishi (Imaizumi)
Affiliation:
Department of Geoscience, Interdisciplinary Graduate School of Science and Engineering, Shimane University, Nishikawatsu 1060, Matsue 690-8504, Japan SHIBAURA ENGINEERING WORKS Co., Ltd., 2-5-1 Kasama, Sakae-ku, Yokohama 247-0006, Japan
Masayuki Sakakibara
Affiliation:
Department of Regional Resource Management, Faculty of Collaborative Regional Innovation, Ehime University, 2-5 Bunkyo-Cho, Matsuyama 790-8577, Japan
Yoshihiro Nakamuta
Affiliation:
Kyushu University Museum, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
*
Corresponding author: Masahide Akasaka; Email: akasaka@riko.shimane-u.ac.jp

Abstract

Intracrystalline distribution of ferrous and ferric iron within pumpellyites (VIIW8VIX4VIY8IVZ12O56–n(OH)n, Z = 1) from low-grade metamorphic green rocks of the Kanogawa unit in the Northern Chichibu Belt, Hijikawa district, western Shikoku, Japan, was investigated using electron microprobe analysis, X-ray Rietveld refinement, and 57Fe Mössbauer spectroscopic analysis to verify the regularity of the distribution of Fe within the octahedral X and Y sites in pumpellyite and its effect on the pumpellyite structure. Two Fe-rich pumpellyite samples, labelled CLW and CHG, with average total Fe2O3 of 10.01±1.69 and 16.07±1.08 wt.%, respectively, were separated from the rock samples. The site occupancies at the X and Y sites in the CLW and CHG pumpellyites, refined using powder X-ray diffraction data, are X[Mg0.298Fe0.298(5)Al0.405]Y[Fe0.191Al0.809] and X[Mg0.244Fe0.42(1)Al0.34]Y[Fe0.32Al0.68], respectively. The Fe2+:Fe3+ ratio of the CLW pumpellyite, determined using Mössbauer spectroscopy, is 12(1):88(3). By combining the average chemical composition data, the site occupancies at the X and Y sites, and the Fe2+:Fe3+ ratio of the CLW pumpellyite, the chemical formulae of CLW and CHG pumpellyites are constructed as (Ca7.96K0.02Na0.01)Σ7.99(Mg1.19Mn2+0.09Fe2+0.39Fe3+0.71Al1.62)Σ4.00(Al6.47Fe3+1.50V0.02Ti0.01)Σ8.00Si12.26O43.33(OH)12.67 and (Ca8.01K0.01)Σ8.02(Mg0.97Mn2+0.02Fe2+0.63Fe3+1.03Al1.19)Σ4.01(Al5.44Fe3+2.55V0.01)Σ8.00Si12.02O42.69OH)13.31, respectively, implying that the proper name of both pumpellyites is pumpellyite-(Al). The intracrystalline distribution coefficients of Fe3+ versus Al between the X and Y sites, KD = (Fe3+/Al)X/(Fe3+/Al)Y, are 1.62 and 1.90 for the CLW and CHG pumpellyites, respectively, implying stronger X-site preference of Fe3+ than Al3+. In the CHG pumpellyite, where the Fe contents at the X and Y sites are higher than in the CLW pumpellyite, the mean <X–O> and <Y–O> distances are 2.06 and 1.98 Å, respectively, which are larger than <X–O> = 2.040 and <Y–O> = 1.944 Å in the CLW pumpellyite. The unit-cell parameters of the CHG pumpellyite are a = 8.8672(3), b = 5.9562(2), c = 19.1899(6) Å, β = 97.473(2)° with V = 1004.9(2) Å3 and are larger than those of the CLW pumpellyite, a = 8.8456(4), b = 5.9393(2), c = 19.1613(8) Å, β = 97.461(3)° with V = 998.14(7) Å3.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Runliang Zhu

References

Akasaka, M. and Shinno, I. (1992) Mössbauer spectroscopy and its recent application to silicate mineralogy. Journal of Mineral Society of Japan, 21, 320. [in Japanese]Google Scholar
Akasaka, M., Sakakibara, M. and Togari, K. (1988) Piemontite from the manganiferous hematite ore deposits in the Tokoro Belt, Hokkaido, Japan. Mineralogy and Petrology, 38, 105116.CrossRefGoogle Scholar
Akasaka, M., Kimura, Y., Omori, Y., Sakakibara, M., Shinno, I. and Togari, K. (1997) 57Fe Mossbauer study of pumpellyite-okhotskite-julgoldite series minerals. Mineralogy and Petrology, 61, 181198.CrossRefGoogle Scholar
Akasaka, M., Takasu, Y., Handa, M., Nagashima, M., Hamada, M. and Ejima, T. (2019) Distribution of Cr3+ between octahedral and tetrahedral sites in synthetic blue and green (CaMgSi2O6)95(CaCrAlSiO6)5 diopside. Mineralogical Magazine, 83, 497505.CrossRefGoogle Scholar
Allmann, R. and Donnay, G. (1971) Structural relations between pumpellyite and ardennite. Acta Crystallographica, B27, 18711875.CrossRefGoogle Scholar
Allmann, R. and Donnay, G. (1973) The crystal structure of julgoldite. Mineralogical Magazine, 39, 271281.CrossRefGoogle Scholar
Artioli, G. and Geiger, CA. (1994) The crystal chemistry of pumpellyite: An X-ray Rietveld Refinement and 57Fe Mossbauer Study. Physics and Chemistry of Minerals, 20, 443453.CrossRefGoogle Scholar
Artioli, G., Geiger, CA. and Dapiaggi, M. (2003) The crystal chemistry of julgoldite-Fe3+ from Bombay, India, studied using synchrotron X-ray powder diffraction and 57Fe Mössbauer spectroscopy. American Mineralogist, 88, 10841090.CrossRefGoogle Scholar
Bancroft, G.M. (1973) Mössbauer Spectroscopy. An Introduction for Inorganic Chemists and Geochemists. McGraw-Hill, London.Google Scholar
Baur, W.H. (1974) The geometry of polyhedral distortions. Predictive relationships for the phosphate group. Acta Crystallographica, B30, 11951215.CrossRefGoogle Scholar
Brastad, K. (1984) Julgoldite from Tafjord Sunnmøre. Contribution to the Mineralogy of Norway, No. 67. Norsk Geologisk Tidsskrift, 64, 251255.Google Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brigatti, M.F., Caprill, E., and Marchesini, M. (2006) Poppiite, the V3+ end-member of the pumpellyite group: Description and crystal structure. American Mineralogist, 91, 584588.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, A29, 266282.Google Scholar
Brown, I.D. and Shannon, R.D. (1973) Empirical bond-strength−bond-length curves for oxides. Acta Crystallographica, A29, 266282.CrossRefGoogle Scholar
Coombs, D.S. (1953) The pumpellyite mineral series. Mineralogical Magazine, 30, 113135.CrossRefGoogle Scholar
Coombs, D.S., Nakamura, Y. and Vuagnat, M. (1976) Pumpellyite-actinolite facies schists of the Taveyanne Formation near Loeche, Valais, Switzerland. Journal of Petrology, 17, 440471.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1986) Rock-forming minerals. 1B (Second edition), Disilicates and ring silicates. Geological Society Publishing House, UK, pp. 629.Google Scholar
De Grave, E., Vandenbruwaene, I. and Van Bockstael, M. (1987) 57Fe Mössbauer spectroscopic analysis of chlorite. Physics and Chemistry of Minerals, 15, 173180.CrossRefGoogle Scholar
Dollase, W.A. (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. Journal of Applied Crystallography, 19, 267272.CrossRefGoogle Scholar
Evarts, R.C. and Schiffman, P. (1983) Submarine hydrothermal metamorphism of the Del Puerto ophiolite, California. American Journal of Science, 283, 289340.CrossRefGoogle Scholar
Galli, E. and Alberti, A. (1969) On the crystal structure of pumpellyite. Acta Crystallographica, B25, 22762281.CrossRefGoogle Scholar
Gandolfi, G. (1967) Discussion upon methods to obtain X-ray «powder patterns» from a single crystal. Mineralogica et Petrographica Acta, 13, 6774.Google Scholar
Gottardi, G. (1965) Die kristallstructur von pumpellyit. Tschermaks Mineralogische und Petrographische Mitteilungen, series 3, 10, 115119.CrossRefGoogle Scholar
Hamada, M., Seto (Sakamoto), S., Akasaka, M. and Takasu, A. (2008) Chromian pumpellyite and associated chromian minerals from Sangun metamorphic rocks, Osayama, southwest Japan. Journal of Mineralogical and Petrological Sciences, 103, 390399.CrossRefGoogle Scholar
Hamada, M., Akasaka, M., Seto, S. and Makino, K. (2010) Crystal chemistry of chromian pumpellyite from Osayama, Okayama Prefecture, Japan. American Mineralogist, 95, 12941304.CrossRefGoogle Scholar
Hashimoto, M. and Kashima, N. (1970) Metamorphism of Paleozoic greenstones in the Chichibu Belt of western Shikoku. The Journal of Geological Society of Japan, 76, 199204.Google Scholar
Hill, R.J. and Flack, H.D. (1987) The use of the Durbin−Watson d statistic in Rietveld analysis. Journal of Applied Crystallography, 20, 356361.CrossRefGoogle Scholar
Ivanov, O.K., Arkhangel'skaya, V.A., Miroshnikova, L.O. and Shilova, T.A. (1981) Shuiskite, the chromium analogue of pumpellyite from the Bisersk deposit, Urals. Zapiski Vserossiyskogo Mineralogicheskogo Obshchestva, 110, 508512 [in Russian].Google Scholar
Izumi, F. (1993) Rietveld analysis program RIETAN and PREMOS and special applications. Pp. 236253 in: The Rietveld Method (Young, R.A., editor). Oxford Science Publications, UK.CrossRefGoogle Scholar
Izumi, F. and Momma, K. (2007) Three-dimensional visualization in powder diffraction. Solid State Phenomena, 130, 1520.CrossRefGoogle Scholar
Kano, K., Satoh, H. and Bunno, M. (1986) Iron-rich pumpellyite and prehnite from the Miocene gabbroic sills of the Shimane Peninsula, southwest Japan. Journal of Japanese Association of Mineralogy, Petrology, and Economic Geology, 81, 5158.Google Scholar
Kasatkin, A.V., Zubkova, N. V., Chukanov, N. V., Ksenofontov, D. A., Shkoda, R., Tishchenko, A.I., Voronin, M.V., Britvin, S.N. and Pekov, I. V. (2021) Unusually rich in iron julgoldite-(Fe3+) from the Karadag volcanic massif (Crimean Peninsula). Zapiski RMO, 150, 96112.Google Scholar
Kashima, N. (1969) Stratigraphical studies of the Chichibu belt in Western Shikoku. Memoirs of the Faculty of Science, Kyushu University, Ser. D, Geology, Vol. XIX, 3, 387436.CrossRefGoogle Scholar
Kihara, K. (1990) An X-ray study of the temperature dependence of the quartz structure. European Journal of Mineralogy, 2, 6377.CrossRefGoogle Scholar
Liou, J.G. (1979) Zeolite facies metamorphism of basaltic rocks from the east Taiwan ophiolite. American Mineralogist, 64, 114.Google Scholar
Livingstone, A. (1976) Julgoldite, new data and occurrences; a second recording. Mineralogical Magazine, 40, 761763.CrossRefGoogle Scholar
Matsuoka, A., Yamakita, S., Sakakibara, M. and Hisada, K. (1998) Unit division for the Chichibu Composite Belt from a viewpoint of accretionary tectonics and geology of western Shikoku, Japan. Journal of Geological Society of Japan, 104, 634653 [in Japanese].Google Scholar
Mevel, C. (1981) Occurrence of pumpellyite in hydrothermally altered basalts from the Vema Fracture Zone (Mid-Atlantic Ridge). Contributions to Mineralogy and Petrology, 76, 386393.CrossRefGoogle Scholar
Minakawa, T. (1992) Study on characteristic mineral assemblages and formation process of metamorphosed manganese ore deposits in the Sanbagawa belt. Memoirs of the Faculty of Science of Ehime University, 1, 174 [in Japanese with English abstract].Google Scholar
Momma, K. and Izumi, F. (2011) VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. Journal of Applied Crystallography, 44, 12721276.CrossRefGoogle Scholar
Moore, PB (1971) Julgoldite, the Fe2+–Fe3+ dominant pumpellyite. A new mineral from Långban, Sweden. Lithos, 4, 9399.Google Scholar
Nagashima, M. and Akasaka, M. (2007) The distribution of chromium in chromian pumpellyite from Sarani, Urals, Russia: A TOF neutron and X-ray Rietveld study. The Canadian Mineralogist, 45, 837846.CrossRefGoogle Scholar
Nagashima, M., Ishida, T. and Akasaka, M. (2006) Distribution of Fe among octahedral sites and its effect on the crystal structure of pumpellyite. Physics and Chemistry of Minerals, 33, 178191.CrossRefGoogle Scholar
Nagashima, M., Akasaka, M., Ikeda, K., Kyono, A. and Makino, K. (2010) X-ray single-crystal and optical spectroscopic study of chromian pumpellyite from Sarany, Urals, Russia. Journal of Mineralogical and Petrological Sciences, 105, 187193.CrossRefGoogle Scholar
Nagashima, M., Cametti, G. and Armbruster, T. (2018) Crystal chemistry of julgoldite, a mineral series of the pumpellyite group: re-investigation of Fe distribution and hydrogen-bonding. European Journal of Mineralogy, 30, 721731.CrossRefGoogle Scholar
Nakamuta, Y. (1993) The determination of lattice parameters of a small crystal with a Gandolfi camera. Journal of Mineralogical Society of Japan, 22, 113122 [Japanese with English abstract].Google Scholar
Nakamuta, Y. (1999) Precise analysis of a very small mineral by an X-ray diffraction method. Journal of Mineralogical Society of Japan, 28, 117121 [Japanese with English abstract].Google Scholar
Palache, C. and Vassar, H.E. (1925) Some minerals of the Keweenawan copper deposits: pumpellyite, a new mineral; sericite; saponite. American Mineralogist, 10, 412418.Google Scholar
Passaglia, E. and Gottardi, G. (1973) Crystal chemistry and nomenclature of pumpellyites and julgoldites. The Canadian Mineralogist, 12, 219223.Google Scholar
Phillips, M.W., Draheim, J.E., Popp, R.K., Clowe, C.A. and Pinkerton, A.A. (1989) Effects of oxidation-dehydrogenation in tschermakitic hornblende. American Mineralogist, 74, 764773.Google Scholar
Post, J.E. and Bish, D.L. (1989) Rietveld refinement of crystal structures using powder X-ray diffraction data. Pp. 277308 in: Modern Powder diffraction (Bish, D.L. and Post, J.E., editors). Reviews in Mineralogy, 20. Mineralogical Society of America, Washington, DC, USA.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation: a quantitative measure of distortion in coordination polyhedra. Science, 172, 567570.CrossRefGoogle ScholarPubMed
Sakakibara, M. (1986) A newly discovered high-pressure terrane in eastern Hokkaido, Japan. Journal of Metamorphic Geology, 4, 401408.CrossRefGoogle Scholar
Sakakibara, M. (1991) Metamorphic petrology of the Northern Tokoro metabasites, eastern Hokkaido, Japan. Journal of Petrology, 32, 333364.CrossRefGoogle Scholar
Sakakibara, M., Oyama, Y., Umeki, M. Sakakibara, H., Shono, H. and Goto, S. (1998) Geotectonic division and regional metamorphism of Northern Chichibu Belt in western Shikoku, Japan. Journal of Geological Society of Japan, 104, 604622 [in Japanese].Google Scholar
Sakakibara, M., Umeki, M. and Cartwright, I. (2007) Isotopic evidence for channeled fluid flow in low-grade metamorphosed Jurassic accretionary complex in the Northern Chichibu belt, western Shikoku, Japan. Journal of Metamorphic Geology, 25, 383400.CrossRefGoogle Scholar
Schiffman, P. and Liou, J.G. (1980) Synthesis and stability relations of Mg-Al pumpellyite, Ca4Al5MgSi6O21(OH)7. Journal of Petrology, 21, 441474.CrossRefGoogle Scholar
Schiffman, P. and Liou, J.G. (1983) Synthesis of Fe-pumpellyite and its stability relations with epidote. Journal of Metamorphic Geology, 1, 91101.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Togari, K. and Akasaka, M. (1987) Okhotskite, a new mineral, an Mn3+-dominant member of the pumpellyite group, from the Kokuriki mine, Hokkaido, Japan. Mineralogical Magazine, 51, 611614.CrossRefGoogle Scholar
Togari, K., Akasaka, M., Sakakibara, M. and Watanabe, T. (1988) Mineralogy of manganiferous iron ore deposits and chert from the Tokoro Belt, Hokkaido. Mining Geology Special Issue, No. 12, 115126.Google Scholar
Umeki, M. and Sakakibara, M. (1998a) Geology and petrologic study of basic rocks of Northern Chichibu Belt in the Hijikawa district, western Shikoku, Japan. Journal of Geological Society of Japan, 104, 590603 [in Japanese].Google Scholar
Umeki, M. and Sakakibara, M. (1998b) Biotite-bearing basic semischists from the northern Chichibu belt in the Hijikawa district Journal of Japanese Association of Mineralogy, Petrology and Economic Geology, 93, 291306 [in Japanese].CrossRefGoogle Scholar
Yabuta, W. and Hirajima, T. (2020) A new occurrence of okhotskite in the Kurosegawa belt, Kyushu, Japan: the okhotskite + Mn-lawsonite assemblage as a potential high-pressure indicator. Journal of Mineralogical and Petrological Sciences, 115, 431439.CrossRefGoogle Scholar
Yoshiasa, A. and Matsumoto, T. (1985) Crystal structure refinement and crystal chemistry of pumpellyite. American Mineralogist, 70, 10111019.Google Scholar
Young, R.A. (1993) Introduction to the Rietveld method. Pp. 138 in: The Rietveld Method (Young, R.A., editor). Oxford Science Publications, UK.CrossRefGoogle Scholar
Supplementary material: File

Akasaka et al. supplementary material 1

Akasaka et al. supplementary material
Download Akasaka et al. supplementary material 1(File)
File 4.2 KB
Supplementary material: File

Akasaka et al. supplementary material 2

Akasaka et al. supplementary material
Download Akasaka et al. supplementary material 2(File)
File 2.7 KB