Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T04:01:42.702Z Has data issue: false hasContentIssue false

Olmiite, CaMn[SiO3(OH)](OH), the Mn-dominant analogue of poldervaartite, a new mineral species from Kalahari manganese fields (Republic of South Africa)

Published online by Cambridge University Press:  05 July 2018

P. Bonazzi*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy
L. Bindi
Affiliation:
Museo di Storia Naturale, sezione di Mineralogia, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy
O. Medenbach
Affiliation:
Institut für Geologie, Mineralogie und Geophysik, Ruhr-Universität Bochum, Universitätsstraße 150, D-44780 Bochum, Germany
R. Pagano
Affiliation:
P.O. Box 37, I-20092 Cinisello, Milano, Italy
G. I. Lampronti
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy
S. Menchetti
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy

Abstract

Olmiite, ideally CaMn[SiO3(OH)](OH), is a newly identified mineral from the N’Chwaning II mine of the Kalahari manganese fields (Republic of South Africa), which occurs as a product of hydrothermal alteration associated with poldervaartite, celestine, sturmanite, bultfonteinite and hematite. The mineral occurs as wheat-sheaf aggregates consisting of pale to intense reddish pink minute crystals. Olmiite is transparent with vitreous lustre, and exhibits deep-red fluorescence under short-wave UV-light. The mineral is brittle, with irregular fracture. Streak is white and Mohs hardness is 5–51/2. No cleavage was observed. The measured density (pycnometer method) is 3.05(3) g/cm3. The calculated density is 3.102 g/cm3 or 3.109 g/cm3 using the unit-cell volume from single-crystal or powder data, respectively. Olmiite is biaxial positive, with refractive indices α = 1.663(1), β = 1.672(1), γ = 1.694(1) (589 nm), 2Vmeas = 71.8(1)º, 2Vcalc = 66(8)º. The optical orientation is X = a, Y = c, Z = b and dispersion: r > v, distinct. Pleochroism is not observed. Chemical analysis by electron microprobe yielded the chemical formula (Ca2–xMnxFey)[SiO3(OH)](OH), with 0.84 ≤ x ≤ 0.86, and y ≤ 0.01. Olmiite is orthorhombic, space group Pbca, with a = 9.249(3), b = 9.076(9), c = 10.342(9) Å , V = 868(1) Å 3 and Z = 8. The strongest five powder-diffraction lines [d in Å , (I/Io), hkl] are: 4.14, (45), 021; 3.19, (100), 122; 2.807, (35), 311; 2.545 (35), 312; 2.361, (40), 223. Single-crystal structure refinement (R1 = 2.74% for 1012 observed reflections) showed that the atomic arrangement of olmiite is similar to that of poldervaartite, with all Mnordered onthe M2 site. Significant variations in bond distances and angles are related to the pronounced difference in the Mn content. Olmiite, therefore, is the Mn-dominant analogue of poldervaartite. The name poldervaartite should be reserved for samples having Ca dominant at the M2 site.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A.L. and Ray, L. (1970) Correction factors for electronprobe analysis of silicate, oxides, carbonates, phosphates, and sulfates. Analytical Chemistry, 48, 1408–1414.Google Scholar
Bence, A.E. and Albee, A.L. (1968) Empirical correctionfactors for the electronmicroan alysis of silicate and oxides. Journal of Geology, 76, 382–403.CrossRefGoogle Scholar
Bonazzi, P., Menchetti, S. and Reinecke, T. (1996) Solid solution between piemontite and androsite-(La), a new mineral of the epidote group from Andros island, Greece. American Mineralogist, 81, 735–743.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analyses of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244–247.Google Scholar
Cairncross, B., Beukes, N. and Gutzmer, J. (1997) The Manganese Adventure: The South African Manganese Fields. Associated Ore and Metal Cooperation Limited, Marshalltown, Johannesburg 2107, Republic of South Africa, 236 pp.Google Scholar
Cairncross, B., Gutzmer, J. and Park, A. (2002) Spektakulä rer Neufund: Poldervaartit aus der N'Chwaning II – Mine, Kalahari, Südafrika. Lapis, 5, 30–34.Google Scholar
Dai, Y., Harlow, G.E. and McGhie, A.R. (1993) Poldervaartite, Ca(Ca0.5Mn0.5)(SiO3OH)(OH), a new acid nesosilicate from the Kalahari manganese field, South Africa: Crystal structure and description. American Mineralogist, 78, 1082–1087.Google Scholar
Downs, R.T., Bartelmehs, K.L., Gibbs, G.V. and Boisen, M.B. Jr. (1993) Interactive software for calculating and displaying X-ray or neutron powder diffractometer patterns of crystalline materials. American Mineralogist, 78, 1104–1107.Google Scholar
Ibers, J.A. and Hamilton, W.C., editors (1974) International Tables for X-ray Crystallography, vol. IV, 366 pp. Kynoch, Birmingham, UK.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship. IV The compatibility concept and its application. The Canadian Mineralogist, 19, 441–450.Google Scholar
Marsh, R.E. (1994) A revised structure for α-dicalcium silicate hydrate. Acta Crystallographica, C50, 996–997.Google Scholar
North, A.C.T., Phillips, D.C. and Mathews, F.S. (1968) A semiempirical method of absorptioncorrection. Acta Crystallographica, A24, 351–359.Google Scholar
Nyfeler, D., Armbruster, Th., Dixon, R. and Bermanec, V. (1995) Nchwanigite, Mn2+ 2 SiO3(OH)2·H2O, a new pyroxene-related chain silicate from N'chwaning mine, Kalahari manganese field, South Africa. American Mineralogist, 80, 377–386.CrossRefGoogle Scholar
Robinson, K., Gibbs, G.V. and Ribbe, P.H. (1971) Quadratic elongation; a quantitative measure of distortion in coordination polyhedral. Science, 172, 567–570.CrossRefGoogle Scholar
Sheldrick, G.M. (1997) SHELXL-97. A program for crystal structure refinement. University of Göttingen, Germany.Google Scholar
Yano, T., Urabe, K., Ikawa, H., Teraushi, T., Ishizawa, N. and Udagawa, S. (1993) Structure of α-dicalcium silicate hydrate. Acta Crystallographica, C49, 1555–1559.Google Scholar