Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T15:31:07.679Z Has data issue: false hasContentIssue false

Nipalarsite, Ni8Pd3As4, a new platinum-group mineral from the Monchetundra Intrusion, Kola Peninsula, Russia

Published online by Cambridge University Press:  05 November 2019

Tatiana L. Grokhovskaya
Affiliation:
Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry Russian Academy of Sciences, Staromonetnyi per. 35, Moscow119017, Russia
Oxana V. Karimova
Affiliation:
Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry Russian Academy of Sciences, Staromonetnyi per. 35, Moscow119017, Russia
Anna Vymazalová*
Affiliation:
Czech Geological Survey, Geologická 6, 152 00Prague 5, Czech Republic
František Laufek
Affiliation:
Czech Geological Survey, Geologická 6, 152 00Prague 5, Czech Republic
Dmitry A. Chareev
Affiliation:
Institute of Experimental Mineralogy, Russian Academy of Sciences Academica Osypyana st., 4, 142432, Chernogolovka, Moscow region, Russia Institute of Physics and Technology, Ural Federal University, Ekaterinburg, Russia Institute of Geology and Petroleum Technologies, Kazan Federal University, Kazan, Russia
Elena V. Kovalchuk
Affiliation:
Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry Russian Academy of Sciences, Staromonetnyi per. 35, Moscow119017, Russia
Larisa O. Magazina
Affiliation:
Institute of Geology of Ore Deposits, Petrology, Mineralogy and Geochemistry Russian Academy of Sciences, Staromonetnyi per. 35, Moscow119017, Russia
Victor A. Rassulov
Affiliation:
All-Russian Scientific Research Institute of Mineral Resources, Staromonetny per. 31, Moscow119017, Russia
*
*Author for correspondence: Anna Vymazalová, Email: anna.vymazalova@geology.cz

Abstract

Nipalarsite, Ni8Pd3As4, is a new platinum-group mineral discovered in the sulfide-bearing orthopyroxenite of the Monchetundra layered intrusion, Kola Peninsula, Russia (67°52′22″N, 32°47′60″E). Nipalarsite forms anhedral grains (5–80 µm in size) in intergrowths with sperrylite, kotulskite, hollingworthite, isomertieite, menshikovite, palarstanide, nielsenite and monchetundtraite enclosed in pentlandite, anthophyllite, actinolite and chlorite. Nipalarsite is brittle, has a metallic lustre and a grey streak. In plane-polarised light, nipalarsite is light grey with a blue tinge. Reflectance values in air (in %) are: 46.06 at 470 nm, 48.74 at 546 nm, 50.64 at 589 nm and 54.12 at 650 nm. Values of VHN20 fall between 400.5 and 449.2 kg.mm–2, with a mean value of 429.9 kg.mm–2, corresponding to a Mohs hardness of ~4. The average result of 27 electron microprobe wavelength dispersive spectroscopy analyses of nipalarsite is (wt.%): Ni 44.011, Pd 28.74, Fe0.32, Cu 0.85, Pt 0.01, Au 0.05, As 25.42, Sb 0.05, Te 0.39, total 99.85. The empirical formula (normalised to 15 atoms per formula unit) is: (Ni8.10Fe0.06)Σ8.16(Pd2.94Cu0.18)Σ3.12(As3.68Te0.03)Σ3.71 or, ideally, Ni8Pd3As4. Nipalarsite is cubic, space group Fm$\bar{3}$m, with a = 11.4428(9) Å, V = 1498.3(4) Å3 and Z = 8. The strongest lines in the powder X-ray diffraction pattern of synthetic Ni8Pd3As4 [d, Å (I) (hkl)] are: 2.859(10)(004), 2.623(6)(313), 2.557(6)(024), 2.334(11)(224), 2.201(35)(115,333), 2.021(100)(044), 1.906(8)(006,244) and 1.429(7)(008). The crystal structure was solved and refined from the single-crystal X-ray diffraction data of synthetic Ni8Pd3As4. The relation between natural and synthetic nipalarsite is illustrated by an electron back-scattered diffraction study of natural nipalarsite. The density calculated on the basis of the empirical formula of nipalarsite is 9.60 g.cm–3. The mineral name corresponds to the three main elements: Ni, Pd and As.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O Galuskina

References

Amelin, Yu.V., Heaman, L.M. and Semenov, V.S. (1995) U–Pb geochronology of layered mafic intrusions in the Eastern Baltic Shield – implications for the timing and duration of Paleoproterozoic continental rifting. Precambrian Research, 75, 3146.CrossRefGoogle Scholar
Barkov, A.Y., Martin, R.F., Pakhomovsky, Y.A., Tolstykh, N.D. and Krivenko, A.P. (2002) Menshikovite, Pd3Ni2As3, a new platinum-group mineral species from two layered complexes, Russia. The Canadian Mineralogist, 40, 679692.CrossRefGoogle Scholar
Bayanova, T.B., Nerovich, L.I., Mitrofanov, F.P., Zhavkov, V.A. and Serov, P.A. (2010) The Monchetundra Basic Massif of the Kola Region: New Geological and Isotope Geochronological Data. Doklady Earth Sciences, 431, 288293.CrossRefGoogle Scholar
Bergman, G. and Waugh, J.L.T. (1956) The crystal structure of the intermetallic compound Mg6Si7Cu16. Acta Crystallographica, 9, 214217.CrossRefGoogle Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing of X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Proceedings of the Russian Mineralogical Society, 146, 104107 [in Russian].Google Scholar
Evstigneeva, T., Kabalov, Yu. and Schneider, J. (2000) Crystal structure of NiPdAs, ordered member of isomorphous series Pd2As–Ni2As. Materials Science Forum, 321–324, 700704.CrossRefGoogle Scholar
Fachinformationszentrum Karlsruhe (2018) Inorganic Crystal Structure Database. Karlsruhe, Germany.Google Scholar
Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849854.CrossRefGoogle Scholar
Furuseth, S.; Selte, K., Kjekshus, A. (1967) On the solid solubility and structural properties of PdAs2–xSbx, PtP2–xAsx, PtP2–xSbx, PtP2–xBix, PtAs2–xSbx, PtAs2–xBix, PtSb2–xBix, Pd1–mPtmAs2, Pd1–mPtmSb2, Pd1–mAumSb2, and Pt1–mAumSb2. Acta Chemica Scandinavica, 21, 527536.CrossRefGoogle Scholar
Genkin, A.D. and Evstigneeva, T.L. (1986) Association of platinum-group minerals of the Noril'sk copper-nickel sulfide ores. Economic Geology, 81, 12031212.CrossRefGoogle Scholar
Genkin, A.D., Distler, V.V., Gladyshev, G.D., Filimonova, A., Evstigneeva, T.L., Kovalenker, V.A., Laputina, I. P., Smirnov, A.V. and Grokhovskaya, T.L. (1981) Sulfide copper-nickel ores of Norilsk deposits. Moscow, Nauka, 234 pp. [in Russian].Google Scholar
Gervilla, F., Makovicky, E., Makovicky, M. and Rose-Hansen, J. (1994) The system Pd–Ni–As at 790° and 450° C. Economic Geology, 89, 1630–9.CrossRefGoogle Scholar
Grokhovskaya, T.L., Bakaev, G.F., Sholokhnev, V.V., Lapina, M.I. and Muravitskaya, G.N. (2003) The PGE Ore mineralization in the Monchegorsk Igneous Layered Complex (Kola Peninsula, Russia). Geology of Ore Deposits, 45, 287309.Google Scholar
Grokhovskaya, T.L., Lapina, M.I. and Mokhov, A.V. (2009) Assemblages and genesis of platinum-group minerals in low-sulfide ores of the Monchetundra deposit, Kola Peninsula, Russia. Geology of Ore Deposits, 51, 467485.CrossRefGoogle Scholar
Grokhovskaya, T., Karimova, O., Vymazalová, A., Laufek, F., Chareev, D. and Rassulov, V. (2018) Nipalarsite, IMA 2018–075. CNMNC Newsletter No. 46, December 2018, page 1370; Mineralogical Magazine, 82, 13691379.Google Scholar
Holman, K.L., Morosan, E., Casey, P.A., Li, L., Ong, N.P., Klimczuk, T., Felser, C. and Cava, R.J. (2008) Crystal structure and physical properties of Mg6Cu16Si7-type M6Ni16Si7, for M = Mg, Sc, Ti, Nb and Ta. Materials Research Bulletin, 43, 915.CrossRefGoogle Scholar
Laufek, F., Vymazalova, A.; Chareev, D.A., Kristavchuk, A.V., Lin, Q., Drahokoupil, J., Vasilchikova, T.M. (2011) Crystal and electronic structure study of AgPd3Se. Journal of Solid State Chemistry, 184, 27942798.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2003) CELREF: Unit Cell Refinement Program from Powder Diffraction Diagram. Laboratoires des Matériaux et du Génie Physique, Ecole Nationale Supériaux de Physique de Grenoble (INPG), Grenoble, France.Google Scholar
Lin, Q. and Corbett, J.D. (2008) Interpenetrating networks of three-dimensional Penrose tiles in CaAu3Ga, the structurally simplest cubic approximant of an icosahedral quasicrystal. Inorganic Chemistry, 47, 34623464.CrossRefGoogle ScholarPubMed
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sheldrick, G.M. (2015 a) SHELXT – Integrated space-group and crystal structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015 b) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Supplementary material: File

Grokhovskaya et al. supplementary material

Grokhovskaya et al. supplementary material

Download Grokhovskaya et al. supplementary material(File)
File 424.3 KB