Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T09:44:18.807Z Has data issue: false hasContentIssue false

Carbonate nodules of probable stromatolitic origin in amphibolite from the Neoproterozoic terrain of southern Israel

Published online by Cambridge University Press:  05 July 2018

R. Bogoch*
Affiliation:
Geological Survey of Israel, 30 Malkhe Israel Street, Jerusalem 95501, Israel
M. Shirav
Affiliation:
Geological Survey of Israel, 30 Malkhe Israel Street, Jerusalem 95501, Israel

Abstract

Several small bodies of massive to banded amphibolite occur within plagioclase-quartz-biotite hornblende gneiss at or close to its boundary with a quartz diorite pluton in the Neoproterozoic terrain of southern Israel. Entrapped within the amphibolite are nodules consisting mainly of calcite+talc, and rare banded marble. Remnant laminae and certain geochemical features such as the negative Ce anomaly and depleted δ13C of the nodules sugggest that they initially formed as stromatolites. The local geological setting of the amphibolites together with the presence of the enclosed meta-carbonates favoured an origin as sediments, although some of the geochemical data point to a basaltic precursor and some of the carbonates have a puzzlingly high (>1000 ppm) Ni content. The origin of the amphibolites is thus enigmatic.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogoch, R., Avigad, D. and Weissbrod, T. (2002) Geochemistry ofthe quartz diorite-granite association, Roded area, southern Israel. Journal of African EarthScience, 35, 5160.Google Scholar
Bowes, D.R. and Park, R.G. (1966) Metamorphic segregation banding in the Loch Kerry basite sheet from the Lewisian of Gairloch, Ross-shire, Scotland. Journal of Petrology, 7, 306330.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1963) Rock Forming Minerals, 2, Chain Silicates. Longmans, Harlow, Essex, UK.Google Scholar
Delgado-Argote, L.A., Lopez-Martinez, M. and Perrilliat, M. del, C. (2000) Geologic reconnaissance and Miocene age ofvolcanism and associated fauna from sediments of Bahia de los Angeles, Baja California, central Gulf of California. Geological Society of America, Special Paper 334, 111121.Google Scholar
Elderfield, H. and Greeves, M.J. (1982) The rare earthelements in sea water. Nature, 296, 214219.CrossRefGoogle Scholar
Evans, B.W. and Leake, B.E. (1960) The composition and origin ofthe striped amphibolites of Connemara, Ireland. Journal of Petrology, 1, 337363.CrossRefGoogle Scholar
Eyal, Y., Eyal, M. and Kroener, A. (1991) Geochronology ofthe Elat Terrain, metamorphic basement, and its implication for crustal evolution of the NE part ofthe Arabian-Nubian Shield. Israel Journal of EarthSciences, 40, 516.Google Scholar
Friedman, G.M., Sanders, J.E. and Kopaska-Merkel, D.C. (1992) Principles of Sedimentary Deposits. Macmillan New York, 464 pp.Google Scholar
Garde, A.A. (1997) Accretion and evolution ofan Archaean high-grade grey gneiss-amphibolite complex; the Fiskefjord area, southern West Greenland. Geology of Greenland Survey Bulletin, 177, 115 pp.Google Scholar
Garfunkel, Z. (1980) Contribution to the geology of the Precambrian ofthe Elat area. Israel Journal of Earth Sciences, 29, 2540.Google Scholar
Grotzinger, J.P. and James, N.P. (editors) (2000) Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. Society for Sedimentary Geology, Special Publication 67, pp. 315326.Google Scholar
Grotzinger, J.P. and Knoll, A.H. (1999) Stromatolites in Precambrian carbonates; evolutionary mileposts or environmental dipstickš Annual Review of Earth and Planetary Sciences, 27, 313358.CrossRefGoogle ScholarPubMed
Grotzinger, J.P. and Rothman, D.H. (1996) An abiotic model for stromatolite morphogenesis. Nature, 383, 423425.CrossRefGoogle Scholar
Gutkin, V. and Eyal, Y. (1998) Geology and evolution ofPrecambrian rocks, Mt. Shelomo, Elat area. Israel Journal of EarthSciences, 47, 117.Google Scholar
Haskin, L.A., Wideman, T.R., Frey, F.A., Collins, K.A., Keedy, C.R. and Haskin, M.A. (1966) Rare earths in sediments. Journal of Geophysical Research, 71, 60916105.CrossRefGoogle Scholar
Hover-Granath, V.C., Papike, J.J. and Labotka, T.C. (1983) The Notch Peak contact metamorphic aureole, Utah: Petrology ofthe Big Horse Limestone Member ofthe Orr Formation. Geological Society of America Bulletin, 94, 889906.2.0.CO;2>CrossRefGoogle Scholar
Kah, L.C. and Knoll, A.H. (1996) Microbenthic dist r ibution ofPr oterozoictidal flats: Environmental and taphonomic considerations. Geology, 24, 7982.2.3.CO;2>CrossRefGoogle Scholar
Kamber, B.S. and Webb, G.E. (2001) The geochemistry oflate Archean microbial carbonate: Implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta, 65, 25092525.CrossRefGoogle Scholar
Katz, O. (1997) The Metamorphism and Structure of the Southeastern Roded Block. Contribution to the Precambrian Basement Evolution. MSc thesis, Hebrew University, Jerusalem, 102 pp.Google Scholar
Katz, O., Avigad, D., Matthews, A. and Heimann, A. (1998) Precambrian metamorphic evolution ofthe Arabian-Nubian Shield in the Roded area, southern Israel. Israel Journal of EarthSciences, 47, 93110.Google Scholar
Kranendonk, M.J., Hickman, A.H., Smithies, R.H. and Nelson, D.R. (2002) Geology and tectonic evolution ofthe Archean North Pilbara Terrain, Pilbara Craton, Western Australia. Economic Geology, 97, 695732.Google Scholar
Labotka, T.C., Nabelek, P.I., Papike, J.J., Hover- Granath, V.C. and Laul, J.C. (1988) Effect of contact metamorphism on the chemistry ofcalcareous rocks in the Big Horse Limestone Member, Notch Peak, Utah. American Mineralogist, 73, 10951110.Google Scholar
Lambert, M.B. (1998) Stromatolites ofthe Late Archaean Back River stratovolcano, Slave structural province, Northwest Territories, Canada. Canadian Journal of EarthSciences, 35, 290301.CrossRefGoogle Scholar
Leake, B.E. (1964) The chemical distinction between ortho- and para-amphibolites. Journal of Petrology, 5, 238254.CrossRefGoogle Scholar
Leake, B.E., Woolley, A.R., Arps, C.E.S., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Guo, Y. (1997) Nomenclature ofamphiboles: report ofthe Subcommittee on Amphiboles ofthe International Mineralogical Association, Commission on New Minerals and Mineral Names. Mineralogical Magazine, 61, 295321.CrossRefGoogle Scholar
Legault, M., Gauthierm M., Jebrak, M., Davis, D.W. and Baillargeon, F. (2002) Evolution ofthe subaqueous to near-emergent Joutel volcanic complex, Northern volcanic zone, Abitibi Subprovince, Quebec, Canada. Precambrian Research, 115, 187221.CrossRefGoogle Scholar
Makrygina, V.A. and Petrova, Z.I. (1998) The importance ofgeochemical data for geodynamic reconstruction; formation of the Olkhon metamorphic complex, Lake Baikal, Russia. Lithos, 43, 135150.CrossRefGoogle Scholar
Murphy, J.B. (2002) Geochemistry oft he Neoproterozoic metasedimentary Gamble Brook Formation, Avalon Terrane, Nova Scotia: evidence for a rifted-arc environment along the West Gondwanan margin ofR odinia. Journal of Geology, 110, 407419.CrossRefGoogle Scholar
Orville, P.M. (1969) A model for metamorphic differentiation: Origin of thin layered amphibolites. American Journal of Science, 267, 6486.CrossRefGoogle Scholar
Pašava, J., Hladíková, J. and Dobeš, P. (1996) Origin of Proterozoic metal-rich black shales from the Bohemian Massif, Czech Republic. Economic Geology, 91, 6379.CrossRefGoogle Scholar
Pettijohn, F.J. (1957) Sedimentary Rocks. Harper, New York, 718 pp.Google Scholar
Pipegras, D.J. and Jacobsen, S.B. (1992) The behaviour ofrare earthelements in sea water: Precise determinations ofvariations in the North pacific water column. Geochimica et Cosmochimica Acta, 56, 18511862.CrossRefGoogle Scholar
Rivalenti, G. and Sighinolfi, G.P. (1969) Geochemical study ofgreywackes as a possible starting material for para-amphibolites. Contributions to Mineralogy and Petrology, 23, 171188.CrossRefGoogle Scholar
Rock, N.M.S. and Macdonald, R. (1986) Petrology, chemistry and origin ofa peculiar lens ofpelites, “limestones” and possible para-amphibolites from the Moines ofthe Ross of Mull, Scotland. Proceedings of the Geologists’ Association, 97, 249258.CrossRefGoogle Scholar
Satyanarayana, K., Naqvi, S.M., Divakararao, V. and Hussain, S.M. (1974) Geochemistry ofArchaean amphibolites from Karnataka State, Peninsular India. Chemical Geology, 14, 305315.CrossRefGoogle Scholar
Smithson, S.B., Fikkan, P.R. and Houston, R.S. (1971) Amphibolitization ofcalc-silicate metasedimentary rocks. Contributions to Mineralogy and Petrology, 31, 228237.CrossRefGoogle Scholar
Srivastav, R.R. (1998) Can discriminant functions identify para-amphibolites. Indian Journal of Geology, 70, 265269.Google Scholar
Stein, M. and Goldstein, S.L. (1996) From plume head to continental lithosphere in the Arabian-Nubian Shield. Nature, 382, 773778.CrossRefGoogle Scholar
Valley, J.W. and O’Neil, J.R. (1981) 13C/12C exchange between calcite and graphite: a possible thermometer in Grenville marbles. Geochimica et Cosmochemica Acta, 45, 411419.CrossRefGoogle Scholar
Westfall, F., Morris, P., de Wit, M.J., de Ronde, C.E.J., Gerneke, D., McKay, D.S. and Gibson, E.K. (1998) Microbial mat evidence for life's variety in 3.5 to 3.3 Ga sediments from the Barberton greenstone belt, South Africa. Geological Society of America, Annual Meeting, Abstracts, pp. 231232.Google Scholar
Wilcox, R.E. and Poldervaart, A. (1958) Metadolerite dike swarm in Bakersville-Roan Mountain area, North Carolina. Geological Society of America Bulletin, 69, 13231368.CrossRefGoogle Scholar
Zhong, S. and Mucci, A. (1995) Partitioning ofrare earthelements (REEs) between calcite and seawater solutions at 25oC and 1 atm, and high dissolved REE concentrations. Geochimica et Cosmochimica Acta, 59, 443453.CrossRefGoogle Scholar