Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T09:37:35.881Z Has data issue: false hasContentIssue false

Capranicaite, (K,☐)(Ca,Na)Al4B4Si2O18: a new inosilicate from Capranica, Italy, with a peculiar topology of the periodic single chain [Si2O6]

Published online by Cambridge University Press:  05 July 2018

A. M. Callegari*
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Pavia, Via Ferrata 1, I-27100 Pavia, Italy
M. Boiocchi
Affiliation:
Centro Grandi Strumenti, Università degli Studi di Pavia, via Bassi 21, I-27100 Pavia, Italy
F. Bellatreccia
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, Largo S. L. Murialdo 1, I–00146 Roma, Italy
E. Caprilli
Affiliation:
Dipartimento di Scienze Geologiche, Università degli Studi Roma Tre, Largo S. L. Murialdo 1, I–00146 Roma, Italy
O. Medenbach
Affiliation:
Institute of Geology, Mineralogy and Geophysics, Ruhr-Universität Bochum, Universitätsstrasse150, D-44780 Bochum, Germany
A. Cavallo
Affiliation:
Istituto Nazionaledi Geofisica e Vulcanologia (I.N.G.V.), Via di Vigna Murata 605, I-00143 Roma, Italy

Abstract

Capranicaite, ideally (K,☐)(Ca,Na)Al4B4Si2O18, is a new inosilicate mineral from the Vico volcanic complex collected at Capranica, Viterbo Province, Latium, Italy. It occurs in miarolitic cavities of a feldspathoid-bearing syenite ejectum and formed by late-stage metasomatic processes related to the activity of theVico volcano.

Capranicaite occurs as thin, tabular crystals no larger than 0.1 mm. Crystals are colourless, with a white streak and a vitreous lustre; they are brittle and their Mohs hardness is certainly <6. Capranicaite is non-fluorescent with good {001} cleavage and no observable parting. The calculated density is 2.41 g/cm3. Crystals are biaxial negative, non pleochroic, with α = 1.495(1), β = 1.543(1), γ = 1.544(1), 2Vobs = 7.3(2)°, 2Vcalc = 16.0°.

Capranicaiteis monoclinic P21/n, with a = 4.8507(2), b = 16.6156(6), c = 20.5445(7) Å, β = 90.245(1)°, V = 1655.82(17) Å3, Z = 4. The strongest six X-ray diffraction lines in the simulated powder pattern are [d in Å (I) (hkl)]: 3.234 (10) (124; 044), 4.104 (9) (1̄21; 121), 3.424 (8) (006), 2.184 (4) (048; 1̄64), 2.405 (4) (160), 2.425 (3) (200). EMP-WDS analysis gives: SiO2 20.70, Al2O3 32.91, B2O3 22.90, K2O 5.36, CaO 11.04, Na2O 4.08, Cs2O 2.20, sum 99.19%; the formula, based on 18 oxygens, is: (K0.69Cs0.10)Σ0.79(Ca1.19Na0.80)Σ1.99Al3.91B3.99Si2.09O18, corresponding to the ideal formula: (K,☐)(Ca,Na)Al4B4Si2O18. The crystal structure shows three overlapping layers of polyhedra parallel to (001): (1) the A layer contains periodic single chains formed by Si2O6 units with a topology not previously observed; (2) the B layer contains isolated AlO4 tetrahedra and BO3 triangles forming a sheet of six-fold rings (3Al + 3B); (3) the C layer contains two octahedral sites: M(1) and M(2), with a mixed (Ca, Na) population. Two B layers and an intermediate A layer are vertex-connected to form a bi-dimensional B-A-B network characterized by large channels not completely populated and accommodating K and minor Cs. Along c from the origin the following layer sequence results: C-[B-A-B]-C-[B-A-B]-C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Burla, M.C., Camalli, M., Cascarano, G.L., Giacovazzo, C., Guagliardi, A., Moliterni, A.G.G., Polidori, G. and Spagna, R. (1999) SIR97: a new tool for crystal structure determination and refinement. Journal of Applied Crystallography, 32, 115119.CrossRefGoogle Scholar
Ballirano, P., Callegari, A., Caucia, F., Maras, A., Mazzi, F., and Ungaretti, L. (2002) The crystal structure of vicanite-(Ce) a borosilicate showing an unusual (Si3B3O18)15– polyanion. American Mineralogist, 87, 11391143.CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G., Parodi, G.C. and Williams, T.C. (1998) Baddeleyite from the vico volcanic complex, Latium Italy. Rendiconti Lincei, 9, 2733.CrossRefGoogle Scholar
Bellatreccia, F., Caprilli, E., Della Ventura, G., Rossi, P. and Fiori, S. (1999) Scheelite (CaWO4) e ferberite (FeWO4) associate a minerali di Th, U e REE negli inclusi sienitici del Lazio ed ipotesi genetiche. Rendiconti Lincei, 10, 919.CrossRefGoogle Scholar
Bellatreccia, F., Della Ventura, G., Williams, C.T., Lumpkin, G.R., Smith, K.L. and Colella, M. (2002) Non-metamict zirconolite polytypes from the feldspathoid- bearing alkali-syenitic ejecta of the Vico volcanic complex (Latium, Italy). European Journal of Mineralogy, 14, 809820.CrossRefGoogle Scholar
Bellatreccia, F., Cámara, F., Ottolini, L., Della Ventura, G., Cibin, G. and Mottana, A. (2005) Wiluitefrom Ariccia, Latium (Italy): Occurrence and crystalstructure. The Canadian Mineralogist, 43, 14571468.CrossRefGoogle Scholar
Bellatreccia, F., Cámara, F. and Della Ventura, G. (2006) Datolite: a new occurrence in volcanic ejecta (Pitigliano, Tuscany, Italy) and crystal-structure refinement. Rendiconti Lincei, 17, 289298.CrossRefGoogle Scholar
Boiocchi, M., Callegari, A., and Ottolini, L. (2006) The crystal structure of piergorite-(Ce), Ca8Ce2(Al0.5 Fe3+ 0.5)Σ1(,Li,Be)2Si6B8O36(OH,F)2: A new borosilicatefr om Vetralla, Italy, with a modified hellandite-type chain. American Mineralogist, 91, 11701177.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of theinorg anic crystal structuredatabase. Acta Crystallographica, B41, 244247.CrossRefGoogle Scholar
Bruker, (2003) SAINT Software Reference Manual. Version 6. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Burns, P.C., Hawthorne, F.C., MacDonald, D.J., Della Ventura, G. and Parodi, G.C. (1993) The crystal structure of stillwellite. The Canadian Mineralogist, 31, 147152.Google Scholar
Busing, W.R., Martin, K.O. and Levy, H.A. (1962) Orfls. Report Ornl-Tm-305. Oak Ridge National Laboratory, Tennessee, USA.Google Scholar
Callegari, A., Giuseppetti, G., Mazzi, F. and Tadini, C. (1992) The refinement of the crystal structure of stillwellite: RE(BSiO5). Neues Jahrbuch für Mineralogie Monatshefte, 2, 4957.Google Scholar
Callegari, A., Caucia, F., Mazzi, F., Oberti, R., Ottolini, L. and Ungaretti, L. (2000) The crystal structure of peprossiite-(Ce), an anhydrous REE and Al micalikeboratewith square-pyramidal coordination for Al. American Mineralogist, 85, 586592.CrossRefGoogle Scholar
Caprilli, E., Della Ventura, G., Williams, C.T., Parodi, G.C. and Tuccimei, P. (2006) The crystal-chemistry of non-metamict pyrochlore-group minerals from Latium (Italy). The Canadian Mineralogist, 44, 13671378.CrossRefGoogle Scholar
Della Ventura, G., Parodi, G.C., Mottana, A., and Chaussidon, M. (1993) Peprossiite-(Ce), a new mineral from Campagnano (Italy): The first anhydrous rare-earth-element borate. European Journal of Mineralogy, 5, 5358.CrossRefGoogle Scholar
Della Ventura, G., Rossi, P., Parodi, G.C., Mottana, A., Raudsepp, M. and Prencipe, M. (2000) Stoppaniite, (Fe,Al,Mg)4(Be6Si12O36)·(H2O)(Na,) a new mineral of thebe ryl group from Latium (Italy). European Journal of Mineralogy, 12, 121127.CrossRefGoogle Scholar
Della Ventura, G., Bonazzi, P., Oberti, R. and Ottolini, L. (2002) Ciprianiite and mottanaite-(Ce), two new minerals of the hellandite group from Latium (Italy). American Mineralogist 87, 739744.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., Caprilli, E., Rossi, P., Tamagnini, F. and Fiori, S. (2004) Dieci anni di micromineralogia laziale. “Il Cercapietre” Notiziario del Gruppo Mineralogico Romano, 1/2, 4–30.Google Scholar
Ferraris, G., Prencipe, M., and Rossi, P (1998) Stoppaniite, a new member of the beryl group: crystal structureand crystal-chemical implications. European Journal of Mineralogy, 10, 491496.CrossRefGoogle Scholar
Grew, E.S. and Rossman, G.R. (1985) Co-ordination of boron in sillimanite. Mineralogical Magazine, 49, 132135.CrossRefGoogle Scholar
Laurenzi, M.A. and Villa, I.M. (1985) K/Ar chronology of theVico Volcano (Latium, Italy). IAVCEI, 1985 Scientific Assembly, Giardini Naxos, Italy, Abstract Volume.Google Scholar
Locardi, E. (1965) Tipi di ignimbriti di magmi mediterranei. Il vulcano di Vico. Atti della Società Toscana di Scienze Naturali, 45, 55173.Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship, IV. Thecompatibilità concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Maras, A., Parodi, G.C., Della Ventura, G. and Ohnenstetter, D. (1995) Vicanite-(Ce): A new Ca- Th-REE borosilicatefrom the Vico volcanic district (Latium, Italy). European Journal of Mineralogy, 7, 439446.CrossRefGoogle Scholar
Medenbach, O. (1985) A new microrefractometer spindle-stage and its application. Fortschritte der Mineralogie 63, 111133.Google Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) Thesta ndardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Oberti, R., Ottolini, L., Cámara, F., and Della Ventura, G. (1999) Crystal structure refinement of nonmetamict Th-rich hellandite-(Ce) from Latium (Italy) and crystal chemistry of the hellandite-group minerals. American Mineralogist, 84, 913921.CrossRefGoogle Scholar
Oberti, R., Della Ventura, G., Ottolini, L., Hawthorne, F.C., and Bonazzi, P. (2002) Re-definition, nomenclature and crystal chemistry of the hellandite group. American Mineralogist, 87, 745752.CrossRefGoogle Scholar
Ross, S.D. (1974) Borates. Pp. 205226 in: The Infrared Spectra of Minerals (Farmer, V.C., editor). Monograph 4, The Mineralogical Society, London.CrossRefGoogle Scholar
Scherillo, A. (1940) I proietti con minerali boriferi dei vulcani cimini. Periodico di Mineralogia, 11, 367391.Google Scholar
Sheldrick, G.M. (1996) SADABS Siemens area detector absorption correction program. University of Göttingen, Germany.Google Scholar
Sollevanti, F. (1983) Geologic, volcanologic and tectonic setting of the Vico-Cimino area, Italy. Journal of Volcanology and Geothermal Research, 17, 203217.CrossRefGoogle Scholar
Vasselli, O. and Conticelli, S. (1990) Boron, cesium and lithium distribution in somea lkaline potassic volcanics from central Italy. Mineralogica et Petrographica Acta, 33, 189204.Google Scholar
Washington, H.S. (1906) The Roman Comagmatic Region. Carnegie Institute of Washington, Yearbook, 56, 206214.Google Scholar
Supplementary material: File

Callegari et al. supplementary material

Structure factors

Download Callegari et al. supplementary material(File)
File 205.7 KB