Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T22:04:19.365Z Has data issue: false hasContentIssue false

A supplement to the amphipod (Crustacea) species inventory of Helgoland (German Bight, North Sea): indication of rapid recent change

Published online by Cambridge University Press:  12 May 2011

Jan Beermann*
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, PO Box 180, 27483 Helgoland, Germany
Heinz-Dieter Franke
Affiliation:
Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, PO Box 180, 27483 Helgoland, Germany
*
Correspondence should be addressed to: J. Beermann, Alfred Wegener Institute for Polar and Marine Research, Biologische Anstalt Helgoland, PO Box 180, 27483 Helgoland, Germany email: Jan.Beermann@awi.de
Get access

Abstract

The surroundings of the rocky island of Helgoland (German Bight, south-western North Sea) are one of the best-studied sites in European seas with species occurrence data available for nearly 150 years. As the area is strongly affected by global change (e.g. increase in mean sea surface temperature at Helgoland by 1.67°C since 1962), ecosystem structure and function are expected to change more than those of average marine systems. The paper presents a supplement to the local amphipod species inventory (5 nautical miles around the island). At least seven species of this ecologically important taxon seem to have newly established themselves at Helgoland since the late 1980s: Ampelisca typica, Amphilochus brunneus, Caprella mutica, Cheirocratus assimilis, Monocorophium acherusicum, Orchestia mediterranea and Orchomenella crenata. Most of them are not only new for the Helgoland area, but also for the German Bight; and two species (Amphilochus brunneus and Orchomenella crenata) are even new to the North Sea as a whole. Out of the seven new species, one (Caprella mutica) is a neozoon from the north-western Pacific. The other six species show clear warm water affinities (oceanic–Lusitanian species) which suggest a recent range expansion in the context of climate warming. The establishment of an increasing number of species formerly probably absent from the area does not seem to be compensated by losses of species, so that local species diversity is expected to increase.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bachelet, G., Dauvin, J.-C. and Sorbe, J.C. (2003) An updated checklist of marine and brackish water Amphipoda (Crustacea: Peracarida) of the southern Bay of Biscay (NE Atlantic). Cahiers de Biologie Marine 44, 121151.Google Scholar
Barnard, J.L. and Karaman, G. (1991a) The families and genera of marine gammaridean Amphipoda (except marine gammaroids) Part 1. Records of the Australian Museum 13, 1417.CrossRefGoogle Scholar
Barnard, J.L. and Karaman, G. (1991b) The families and genera of marine gammaridean Amphipoda (except marine gammaroids) Part 2. Records of the Australian Museum 13, 419866.CrossRefGoogle Scholar
Beare, D.J., Burns, F., Greig, A., Jones, E.G., Peach, K., Kienzle, M., McKenzie, E. and Reid, D.G. (2004) Long-term increase in prevalence of North Sea fishes having southern biogeographic affinities. Marine Ecology Progress Series 284, 269278.CrossRefGoogle Scholar
Belkin, I.M. (2009) Rapid warming of large marine ecosystems. Progress in Oceanography 81, 207213.CrossRefGoogle Scholar
Bellan-Santini, D. (1982) Family Ampeliscidae. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Monaco: Mémoires de l'Institut Océanographique 13, pp. 1969.Google Scholar
Bellan-Santini, D. (1993) Genus Orchestia Leach, 1814. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Monaco: Mémoires de l'Institut Océanographique 13, pp. 742753.Google Scholar
Beukema, J.J. and Dekker, R. (2010) Increasing species richness of the macrozoobenthic fauna on tidal flats of the Wadden Sea by local range expansion and invasion of exotic species. Helgoland Marine Research, DOI 10.1007/s10152-010-0210-7.Google Scholar
Boos, K. (2009) Mechanisms of a successful immigration from north-east Asia: population dynamics, life history traits and interspecific interactions in the caprellid amphipod Caprella mutica Schurin, 1935 (Crustacea, Amphipoda) in European coastal waters. Dissertation thesis. Freie Universität Berlin.Google Scholar
Boos, K., Ashton, G.V. and Cook, E.J. (2011) The Japanese skeleton shrimp Caprella mutica (Crustacea, Amphipoda): a global invader of coastal waters. In Galil, B.S., Clark, P.F. and Carlton, J.T. (eds) In the wrong place—alien marine crustaceans: distribution, biology and impacts. Dordrecht: Springer, pp. 129–156.Google Scholar
Borowsky, B. (1985) Differences in reproductive behavior between two male morphs of the amphipod crustacean Jassa falcata Montagu. Physiological Zoology 58, 497502.CrossRefGoogle Scholar
Bousfield, E.L. (1973) Shallow-water gammaridean Amphipoda of New England. Ithaca and London: Comstock Publishing Associates, Cornell University Press.Google Scholar
Bousfield, E.L. and Hoover, P.M. (1997) The amphipod superfamily Corophioidea on the Pacific coast of North America. Part V. Family Corophiidae: Corophiinae, new subfamily. Systematics and distributional ecology. Amphipacifica. 2, 67140.Google Scholar
Bowman, T.E. (1973) Pelagic amphipods of the genus Hyperia and closely related genera (Hyperiidea: Hyperiidae). Smithsonian Contributions to Zoology 136, 176.Google Scholar
Bowman, T.E. and Gruner, H.-E. (1973) The families and genera of Hyperiidea (Crustacea: Amphipoda). Smithsonian Contributions to Zoology 146, 164.Google Scholar
Buschbaum, C. and Gutow, L. (2005) Mass occurrence of an introduced crustacean (Caprella cf. mutica) in the south-eastern North Sea. Helgoland Marine Research 59, 252253.CrossRefGoogle Scholar
Caspers, H. (1939) Die Bodenfauna der Helgoländer Tiefen Rinne. Helgoländer Wissenschaftliche Meeresuntersuchungen 2, 1112.CrossRefGoogle Scholar
Chintiroglou, C.-C., Antoniadou, C., Baxevanis, A., Damianidis, P., Karalis, P. and Vafidis, D. (2004) Peracarida populations of hard substrate assemblages in ports of the NW Aegean Sea (eastern Mediterranean). Helgoland Marine Research 58, 5461.CrossRefGoogle Scholar
Conlan, K.E. (1989) Delayed reproduction and adult dimorphism in males of the amphipod genus Jassa (Corophioidea: Ischyroceridae): an explanation for systematic confusion. Journal of Crustacean Biology 9, 601625.CrossRefGoogle Scholar
Conlan, K.E. (1990) Revision of the crustacean amphipod genus Jassa Leach (Corophioidea: Ischyroceridae). Canadian Journal of Zoology 68, 20312075.CrossRefGoogle Scholar
Conlan, K.E. (1994) Amphipod crustaceans and environmental disturbance: a review. Journal of Natural History 28, 519554.CrossRefGoogle Scholar
Conradi, M. and López-González, P.J. (1999) The benthic Gammaridea (Crustacea, Amphipoda) fauna of Algeciras Bay (Strait of Gibraltar): distributional ecology and some biogeographical considerations. Helgoland Marine Research 53, 28.CrossRefGoogle Scholar
Conradi, M. and López-González, P.J. (2001) Relationships between environmental variables and the abundance of peracarid fauna in Algeciras (southern Iberian Peninsula). Ciencias Marinas 27, 481500.CrossRefGoogle Scholar
d'Udekem d'Acoz, C. (1993) Présence et abondance de Jassa herdmani (Walker, 1893) sur la côte belge (Crustacea, Amphipoda, Ischyroceridae). De Strandvlo 13, 134138.Google Scholar
d'Udekem d'Acoz, C. (2004) The genus Bathyporeia Lindström, 1855, in western Europe (Crustacea: Amphipoda: Pontoporeiidae). Zoologische Verhandelingen 348, 3162.Google Scholar
Dauvin, J.-C. (1999) Mise à jour de la liste des espèces d'amphipodes (Crustacea: Peracarida) présents en Manche. Cahiers de Biologie Marine 40, 165183.Google Scholar
Dauvin, J.-C. and Bellan-Santini, D. (1988) Illustrated key to Ampelisca species from the north-eastern Atlantic. Journal of the Marine Biological Association of the United Kingdom 68, 659676.CrossRefGoogle Scholar
den Hartog, C. (1963) The amphipods of the deltaic region of the rivers Rhine, Meuse and Scheldt in relation to the hydrography of the area. Part II. The Talitridae. Netherlands Journal of Sea Research 2, 4067.CrossRefGoogle Scholar
Dittrich, B. (1987) Postembryonic development of the parasitic amphipod Hyperia galba. Helgoländer Wissenschaftliche Meeresuntersuchungen 41, 217232.CrossRefGoogle Scholar
Dittrich, B. (1988) Studies on the life cycle and reproduction of the parasitic amphipod Hyperia galba in the North Sea. Helgoländer Wissenschaftliche Meeresuntersuchungen 42, 7998.CrossRefGoogle Scholar
Diviacco, G. and Ruffo, S. (1989) Family Lysianassidae. In Ruffo S. (ed.) The Amphipoda of the Mediterranean. Monaco: Mémoires de l'Institut Océanographique 13, pp. 469576.Google Scholar
Duhig, M. (1960) The Amphipoda of Dalkey Island and its neighbouring waters. Proceedings of the Royal Irish Academy 61, 5977.Google Scholar
Duhig, M. and Humphries, C. (1955) Amphilochus brunneus Della Valle, an amphipod new to Britain and Ireland and notes on other amphipods not previously recorded in Irish coastal waters. Proceedings of the Royal Irish Academy 57, 123129.Google Scholar
Edwards, M., John, A.W.G., Hunt, H.G. and Lindley, J.A. (1999) Exceptional influx of oceanic species into the North Sea late 1997. Journal of the Marine Biological Association of the United Kingdom 79, 737739.CrossRefGoogle Scholar
Enequist, P. (1949) Studies on the soft-bottom amphipods of the Skagerak. Zoologiska Bidrag från Uppsala 28, 269491.Google Scholar
Faasse, M. and Stikvoort, E. (2002) Mariene en estuariene vlokreeftjes van zachte bodems in het Deltagebied (Crustacea: Gammaridea). Nederlandse Faunistische Mededelingen 17, 5785.Google Scholar
Faasse, M. and van Moorsel, G. (2000) Niuwe en minder bekende vlokreeftjes van sublitorale harde bodems in het Deltagebied (Crustacea: Amphipoda: Gammaridea). Nederlandse Faunistische Mededelingen 11, 1944.Google Scholar
Faasse, M. and van Moorsel, G. (2003) The North-American amphipods, Melita nitida Smith, 1873 and Incisocalliope aestuarius (Watling and Maurer, 1973) (Crustacea: Amphipoda: Gammaridea), introduced to the Western Scheldt estuary (The Netherlands). Aquatic Ecology 37, 1322.CrossRefGoogle Scholar
France, R.L. (1991) Empirical methodology for predicting changes in species range extension and richness associated with climate warming. International Journal of Biometeorology 34, 211216.CrossRefGoogle Scholar
Franke, H.-D., Buchholz, F. and Wiltshire, K.H. (2004) Ecological long-term research at Helgoland (German Bight, North Sea): retrospect and prospect—an introduction. Helgoland Marine Research 58, 223229.CrossRefGoogle Scholar
Franke, H.-D. and Gutow, L. (2004) Long-term changes in the macrozoobenthos around the rocky island of Helgoland (German Bight, North Sea). Helgoland Marine Research 98, 303310.CrossRefGoogle Scholar
Gaylord, B. and Gaines, S.D. (2000) Temperature or transport? Range limits in marine species mediated solely by flow. American Naturalist 155, 769789.CrossRefGoogle Scholar
Greve, W., Reiners, F., Nast, J. and Hoffmann, S. (2004) Helgoland Roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgoland Marine Research 58, 274288.CrossRefGoogle Scholar
Griffiths, C.L. (1973) The Amphipoda of southern Africa Part 1. The Gammaridea and Caprellidea of southern Moçambique. Annals of the South African Museum 60, 265306.Google Scholar
Griffiths, C.L. (1974) The Amphipoda of southern Africa Part 2. The Gammaridea and Caprellidea of south west Africa south of 20°S. Annals of the South African Museum 62, 169208.Google Scholar
Griffiths, C.L. (1975) The Amphipoda of southern Africa Part 5. The Gammaridea and Caprellidea of the Cape Province west of Cape Agulhas. Annals of the South African Museum, 67, 91181.Google Scholar
Guerra-García, J.M. (2002a) Re-descriptions of Caprella linearis (Linnaeus, 1767) and C. septentrionalis Kröyer, 1838 (Crustacea: Amphipoda: Caprellidea) from Scotland, with an ontogenetic comparison between the species and a study of the clinging behaviour. Sarsia 87, 216235.CrossRefGoogle Scholar
Guerra-García, J.M. (2002b) Revision of the genus Noculacia Mayer, 1903 (Crustacea: Amphipoda: Caprellidea) with the description of two new species. Organisms Diversity and Evolution, Electronic Supplement 7, 126.Google Scholar
Guerra-García, J.M. (2004) The Caprellidea (Crustacea, Amphipoda) from Western Australia and Nothern Territory, Australia. Hydrobiologia 522, 174.CrossRefGoogle Scholar
Guerra-García, J.M., Corzo, J. and García-Gómez, J.C. (2002) Clinging behaviour of the Caprellidea (Amphipoda) from the Strait of Gibraltar. Crustaceana 75, 4150.CrossRefGoogle Scholar
Guerra-García, J.M. and Takeuchi, I. (2000) Redescription of Pseudoprotella inermis Chevreux, 1927, a rare species of caprellidean amphipod (Crustacea) from Ceuta, North Africa. Proceedings of the Biological Society of Washington 113, 980998.Google Scholar
Guerra-García, J.M. and Takeuchi, I. (2002) The Caprellidea (Crustacea: Amphipoda) from Ceuta, North Africa, with the description of three species of Caprella, a key to the species of Caprella, and biogeographical discussion. Journal of Natural History 36, 675713.CrossRefGoogle Scholar
Harms, J. (1993) Check list of species (algae, invertebrates and vertebrates) found in the vicinity of the island of Helgoland (North Sea, German Bight)—a review of recent records. Helgoländer Wissenschaftliche Meeresuntersuchungen 47, 134.CrossRefGoogle Scholar
Havermans, C., De Broyer, C., Mallefet, J. and Zintzen, V. (2007) Dispersal mechanisms in amphipods: a case study of Jassa herdmani (Crustacea, Amphipoda) in the North Sea. Marine Biology 153, 8389.CrossRefGoogle Scholar
Havermans, C., Nagy, Z.T., Sonet, G., De Broyer, C. and Martin, P. (2010) Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: a case study of Antarctic lysianassoids. Molecular Phylogenetics and Evolution 55, 202209.CrossRefGoogle ScholarPubMed
Hawkins, S.J., Sugden, H.E., Mieszkowska, N., Moore, P.J., Poloczanska, E., Leaper, R., Herbert, R.J.H., Genner, M.J., Moschella, P.S., Thompson, R.C., Jenkins, S.R., Southward, A.J. and Burrows, M.T. (2009) Consequences of climate-driven biodiversity changes for ecosystem functioning of North European rocky shores. Marine Ecology Progress Series 396, 245259.CrossRefGoogle Scholar
Highsmith, R.C. (1985) Floating and algal rafting as potential dispersal mechanisms in brooding invertebrates. Marine Ecology Progress Series 25, 169179.CrossRefGoogle Scholar
Ingle, R.W. (1969) The crustacean amphipod genus Corophium Latreille; a morphological and taxonomic study. Dissertation thesis. University of Reading, Reading.Google Scholar
Karaman, G. (1981) Redescription of Melita planaterga Kunkel 1910 from Bermuda islands with revision of genera Melita Leach and Abludomelita n. gen. (Contribution to the knowledge of the Amphipoda 119). Poljoprivreda i Šumarstvo 27, 2950.Google Scholar
Karaman, G. (1982) Family Gammaridae. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Monaco: Mémoires de l'Institut Océanographique 13, pp. 245364.Google Scholar
Kilgallen, N.M., Myers, A.A. and McGrath, D. (2006a) Re-establishment of Orchomenella crenata (Crustacea: Amphipoda) as a distinct species, with a first record of its occurrence in the British Isles. Journal of the Marine Biological Association of the United Kingdom 86, 13891399.CrossRefGoogle Scholar
Kilgallen, N.M., Myers, A.A. and McGrath, D. (2006b) A review of the genus Tryphosella (Crustacea: Amphipoda) from Britain and Ireland, with the description of a new species Tryphosella lowryi. Journal of the Marine Biological Association of the United Kingdom 86, 10671081.CrossRefGoogle Scholar
Krapp-Schickel, G. (1982) Family Amphilochidae. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Monaco: Mémoires de l'Institut Océanographique 13, pp. 7093.Google Scholar
Krapp-Schickel, G. (1993) Suborder Caprellidea. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Monaco: Mémoires de l'Institut Océanographique 13, pp. 773813.Google Scholar
Lavaniegos, B.E. and Ohman, M.D. (1999) Hyperiid amphipods as indicators of climate change in the Californian Current. In Schram, F.R. and Vaupel Klein, J.C.V. (eds) Crustaceans and the biodiversity crisis. Proceedings of the Fourth International Crustacean Congress 1998. Leiden: Brill, pp. 489509.Google Scholar
Lincoln, R.J. (1979) British marine Amphipoda: Gammaridea. London: British Museum (Natural History).Google Scholar
Linton, D.M. and Warner, G.F. (2003) Biological indicators in the Caribbean coastal zone and their role in integrated coastal management. Ocean and Coastal Management 46, 261276.CrossRefGoogle Scholar
Marques, J.C. and Bellan-Santini, D. (1993) Biodiversity in the ecosystem of the Portuguese continental shelf: distributional ecology and the role of benthic amphipods. Marine Biology 115, 555564.CrossRefGoogle Scholar
McCain, J.C. (1968) The Caprellidae (Crustacea: Amphipoda) of the western North Atlantic. United States National Museum Bulletin 278, 1147.CrossRefGoogle Scholar
McCain, J.C. and Steinberg, J.E. (1970) Caprellidea I. Fam. Caprellidae. Crustaceorum Catalogus 2, 178.Google Scholar
Mooney, H.A. and Cleland, E.E. (2001) The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences of the United States of America 98, 54465451.CrossRefGoogle ScholarPubMed
Moore, P.G. (1973) The larger Crustacea associated with holdfasts of kelp (Laminaria hyperborea) in North-East Britain. Cahiers de Biologie Marine 14, 493518.Google Scholar
Moore, P.G. (1981) The life histories of the amphipods Lembos websteri Bate and Corophium bonnellii Milne Edwards in kelp holdfasts. Journal of Experimental Marine Biology and Ecology 49, 150.CrossRefGoogle Scholar
Mouritsen, K.N., Tompkins, D.M. and Poulin, R. (2005) Climate warming may cause a parasite-induced collapse in coastal amphipod populations. Oecologia 146, 476483.CrossRefGoogle Scholar
Myers, A.A. (1976) The genera Megamphopus Norman and Microprotopus Norman (Amphipoda–Gammaridea) in the Mediterranean. Bulletin du Muséum National d'Histoire Naturelle, 3e série 357, 121132.Google Scholar
Myers, A.A. (1982) Family Corophiidae. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Monaco: Mémoires de l'Institut Océanographique 13, pp. 185208.Google Scholar
Myers, A.A. (1989) Family Isaeidae. In Ruffo, S. (ed.) The Amphipoda of the Mediterranean. Monaco: Mémoires de l'Institut Océanographique 13, pp. 395426.Google Scholar
Myers, A.A. and McGrath, D. (1984) A Revision of the North-East Atlantic species of Ericthonius (Crustacea: Amphipoda). Journal of the Marine Biological Association of the United Kingdom 64, 379400.CrossRefGoogle Scholar
Myers, A.A. and McGrath, D. (1991) The Ampelisca diadema group of species (Amphipoda: Gammaridea) in British and Irish waters. Journal of the Marine Biological Association of the United Kingdom 71, 265279.CrossRefGoogle Scholar
Myers, A.A., McGrath, D. and Cunningham, P. (1989) A presumed male of the parthenogenetic amphipod Corophium bonnellii (Milne-Edwards). Journal of the Marine Biological Association of the United Kingdom 69, 319321.CrossRefGoogle Scholar
Nehring, S. (1998) Establishment of thermophilic phytoplankton species in the North Sea: biological indicators of climate changes? ICES Journal of Marine Science 55, 818823.CrossRefGoogle Scholar
Nehring, S. (2006) Four arguments why so many alien species settle into estuaries, with special reference to the German River Elbe. Helgoland Marine Research 60, 127134.CrossRefGoogle Scholar
Palerud, R. and Vader, W. (1991) Marine Amphipoda Gammaridea in North-East Atlantic and Norwegian Arctic. Tromura 68, 1101.Google Scholar
Parmesan, C. (2006) Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics 37, 637669.CrossRefGoogle Scholar
Parmesan, C. and Yohe, G. (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 3742.CrossRefGoogle ScholarPubMed
Perry, A.L., Low, P.J., Ellis, J.R. and Reynolds, J.D. (2005) Climate change and distribution shifts in marine fishes. Science 308, 19121915.CrossRefGoogle ScholarPubMed
Platvoet, D., de Bruyne, R.H. and Gmelig Meyling, A.W. (1995) Description of a new Caprella-species from the Netherlands: Caprella macho nov. spec. (Crustacea, Amphipoda, Caprellidae). Bulletin Zoölogisch Museum, Universiteit van Amsterdam 15, 14.Google Scholar
Platvoet, D. and Pinkster, S. (1995) Changes in the amphipod fauna (Crustacea) of the Rhine, Meuse and Scheldt etuary due to the Delta Plan' coastal engineering works. Netherlands Journal of Aquatic Ecology 29, 530.CrossRefGoogle Scholar
Reibisch, J. (1906) Faunistisch-biologische Untersuchungen über Amphipoden der Nordsee. 2. Teil. Wissenschaftliche Meeresuntersuchungen Abteilung Kiel 9, 185236.Google Scholar
Reid, P.C., de Fatima Borges, M. and Svendsen, E. (2001) A regime shift in the North Sea circa 1988 linked to changes in the North Sea horse mackerel fishery. Fisheries Research 50, 163172.CrossRefGoogle Scholar
Reise, K., Gollasch, S. and Wolff, W.J. (1999) Introduced marine species to the North Sea coasts. Helgoländer Wissenschaftliche Meeresuntersuchungen 52, 219234.CrossRefGoogle Scholar
Reish, D.J. (1993) Effects of metals and organic compounds on survival and bioaccumulation in two species of marine gammaridean amphipod, together with a summary of toxicological research in this group. Journal of Natural History 27, 781794.CrossRefGoogle Scholar
Ruiz, G.M., Fofonoff, P., Hines, A.H. and Grosholz, E.D. (1999) Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions. Limnology and Oceanography 44, 950972.CrossRefGoogle Scholar
Sars, G.O. (1895) An account of the Crustacea of Norway with short descriptions and figures of all the species. Volume 1: Amphipoda. Christiania, Copenhagen: Alb. Cammermeyers Forlag.Google Scholar
Sax, D.F. and Gaines, S.D. (2003) Species diversity: from global decreases to local increases. Trends in Ecology and Evolution 18, 561566.CrossRefGoogle Scholar
Schellenberg, A. (1942) Flohkrebse oder Amphipoda. Jena: Gustav Fischer Verlag.Google Scholar
Schückel, U., Schückel, S., Beck, M. and Liebezeit, G. (2010) New range expansion of Caprella mutica Schurin, 1935 (Malacostraca: Caprellidae) to the German coast, North Sea. Aquatic Invasions 5, 8589.CrossRefGoogle Scholar
Schultze, K., Janke, K. and Krüß, A. (1990) The macrofauna and macroflora associated with Laminaria digitata and L. hyperborea at the island of Helgoland (German Bight, North Sea). Helgoländer Wissenschaftliche Meeresuntersuchungen 44, 3951.CrossRefGoogle Scholar
Simpson, S.L., Batley, G.E., Chariton, A.A., Stauber, J.L., King, C.K., Chapman, J.C., Hyne, R.V., Gale, S.A., Roach, A.C. and Maher, W.A. (2005) Handbook for sediment quality assessment. Bangor (NSW): CSIRO.Google Scholar
Sokolowsky, A. (1900) Die Amphipoden Helgolands. Wissenschaftliche Meeresuntersuchungen (Abteilung Helgoland) 4, 143166.Google Scholar
Sokolowsky, A. (1915) Nachträge zur Amphipodenfauna Helgolands. Wissenschaftliche Meeresuntersuchungen (Abteilung Helgoland) 16, 16.Google Scholar
Stephensen, K. (1935) The Amphipoda of North Norway and Spitsbergen with adjacent waters Part 1. Tromsø Museums Skrifter 3, 1140.Google Scholar
Stephensen, K. (1938) The Amphipoda of North Norway and Spitsbergen with adjacent waters Part 2. Tromsø Museums Skrifter 3, 141278.Google Scholar
Stephensen, K. (1940) The Amphipoda of North Norway and Spitsbergen with adjacent waters Part 3. Tromsø Museums Skrifter 3, 279362.Google Scholar
Stephensen, K. (1942) The Amphipoda of North Norway and Spitsbergen with adjacent waters Part 4. Tromsø Museums Skrifter 3, 363526.Google Scholar
Thiel, M. and Gutow, L. (2005) The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanography and Marine Biology: an Annual Review 43, 279418.Google Scholar
Thomas, J.D. (1993) Biological monitoring and tropical biodiversity in marine environments: a critique with recommendations, and comments on the use of amphipods as bioindicators. Journal of Natural History 27, 795806.CrossRefGoogle Scholar
Vinogradov, M.E., Volkov, A.F. and Semenova, T.N. (1996) Hyperiid amphipods (Amphipoda, Hyperiidea) of the world oceans. Lebanon: Science Publishers Inc.Google Scholar
Vitoussek, P.M., d'Antonio, C.M., Loope, L.L., Rejmanek, M. and Westbrooks, R. (1997) Introduced species: a significant component of human-caused global change. New Zealand Journal of Ecology 21, 116.Google Scholar
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.-M., Hoegh-Guldberg, O. and Bairlein, F. (2002) Ecological responses to recent climate change. Nature 416, 389395.CrossRefGoogle ScholarPubMed
Wildish, D.J. (1987) Estuarine species of Orchestia (Crustacea: Amphipoda: Talitroidea) from Britain. Journal of the Marine Biological Association of the United Kingdom 67, 571583.CrossRefGoogle Scholar
Wiltshire, K.H., Kraberg, A., Bartsch, I., Boersma, M., Franke, H.-D., Freund, J., Gebühr, C., Gerdts, G., Stockmann, K. and Wichels, A. (2010) Helgoland Roads, North Sea: 45 years of change. Estuaries and Coasts 33, 295310.CrossRefGoogle Scholar
Wolff, W.J. (1973) The estuary as a habitat—an analysis of data on the soft-bottom macrofauna of the estuarine area of the rivers Rhine, Meuse and Scheldt. Zoologische Verhandelingen 126, 1242.Google Scholar
Zintzen, V., Massin, C., Norro, A. and Mallefet, J. (2006) Epifaunal inventory of two shipwrecks from the Belgian Continental Shelf. Hydrobiologia 555, 207219.CrossRefGoogle Scholar
Zintzen, V., Norro, A., Massin, C. and Mallefet, J. (2008) Temproral variation of Tubularia indivisa (Cnidaria, Tubulariidae) and associated epizoites on artificial habitat communities in the North Sea. Marine Biology 153, 405420.CrossRefGoogle Scholar