Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T19:50:30.808Z Has data issue: false hasContentIssue false

Morphological and molecular evidence places Maronina into synonymy with Protoparmelia (Ascomycota: Lecanorales)

Published online by Cambridge University Press:  05 October 2011

K. PAPONG
Affiliation:
Department of Biology and Natural Medicinal Mushroom Museum, Faculty of Science, Mahasarakham University, Khamrieng, Kantarawichai, Maha Sarakham Province, 44150Thailand.
G. KANTVILAS
Affiliation:
Tasmanian Herbarium, Private Bag 4, Hobart, Tasmania 7001, Australia.
H. T. LUMBSCH*
Affiliation:
The Field Museum, Department of Botany, 1400 S Lake Shore Drive, Chicago, IL 60605, USA.

Abstract

The phylogenetic placement of the genus Maronina was studied, based chiefly on phenotypic characters such as thallus colour and anatomy, secondary chemistry, the anatomy of the excipulum and the ascus-type. DNA sequence data of mitochondrial and nuclear ribosomal loci from some of the species support the hypothesis that Maronina is nested within Protoparmelia. Hence, Maronina is reduced to synonymy with Protoparmelia. Comparison of genetic distances suggests that the two varieties within M. orientalis should be regarded as distinct species. Consequently, the new combinations Protoparmelia australiensis (Hafellner & R. W. Rogers) Kantvilas et al., P. corallifera (Kantvilas & Papong) Kantvilas et al., P. hesperia (Kantvilas & Elix) Kantvilas et al., P. multifera (Nyl.) Kantvilas et al., and P. orientalis (Kantvilas & Papong) Kantvilas et al. are proposed.

Type
Research Article
Copyright
Copyright © British Lichen Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arup, U., Ekman, S., Grube, M., Mattsson, J.-E. & Wedin, M. (2007) The sister group relation of Parmeliaceae (Lecanorales, Ascomycota). Mycologia 99: 4249.CrossRefGoogle ScholarPubMed
Crespo, A., Kauff, F., Divakar, P. K., Amo, G., Arguello, A., Blanco, O., Cubas, P., del Prado, R., Elix, J. A., Esslinger, T. L., et al. (2010) Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon 59: 17351753.CrossRefGoogle Scholar
Crespo, A., Lumbsch, H. T., Mattsson, J.-E., Blanco, O., Divakar, P. K., Articus, K., Wiklund, E., Bawingan, P. A. & Wedin, M. (2007) Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44: 812824.CrossRefGoogle ScholarPubMed
Felsenstein, J. (1985) Confidence-limits on phylogenies – an approach using the bootstrap. Evolution 39: 783791.CrossRefGoogle ScholarPubMed
Gardes, M. & Bruns, T. D. (1993) ITS primers with enhanced specificity for basidiomycetes— application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113118.CrossRefGoogle Scholar
Hafellner, J. & Rogers, R. W. (1990) Maronina—a new genus of lichenised ascomycetes (Lecanorales, Lecanoraceae) with multispored asci. Bibliotheca Lichenologica 38: 99108.Google Scholar
Henssen, A. (1995) Apothecial structure and development in Protoparmelia badia (Parmeliaceae s. lat.). In Flechten Follman. Contributions to Lichenology in Honour of Gerhard Follman (Daniels, F. J. A., Schutlz, M. & Peine, J., eds): 5562. Cologne: Botanical Institute, University of Cologne.Google Scholar
Huelsenbeck, J. P. & Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754755.CrossRefGoogle ScholarPubMed
Kantvilas, G. & Elix, J. A. (2007) Observations on the genus Maronina. Bibliotheca Lichenologica 96: 137143.Google Scholar
Kantvilas, G., Papong, K. & Lumbsch, H. T. (2010) Further observations on the genus Maronina, with descriptions of two new taxa from Thailand. Lichenologist 42: 557561.CrossRefGoogle Scholar
Lumbsch, H. T. & Huhndorf, S. M. (2010) Myconet Volume 14. Part One. Outline of Ascomycota— 2009. Fieldiana (Life and Earth Sciences) 1: 140.CrossRefGoogle Scholar
Mangold, A., Martin, M. P., Lücking, R. & Lumbsch, H. T. (2008) Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota : Ostropales). Taxon 57: 476486.Google Scholar
McCarthy, P. M. (2004) Maronina. In Flora of Australia. Volume 56A, Lichens 4 (McCarthy, P. M. & Mallett, K., eds): 6263. Canberra and Melbourne: ABRS and CSIRO Publishing.Google Scholar
Nylander, J. A.A., Wilgenbusch, J. C., Warren, D. L. & Swofford, D. L. (2007) AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24: 581583.CrossRefGoogle Scholar
Nylander, W. (1863) Lichenes. In Triana, J. & Planchon, J.E. Prodromus Florae Novo-Granatensis ou Énumération des plantes de la Nouvelle-Grénade avec description des espèces nouvelles. Annales des Sciences Naturelles 19, 20: 286382, 228279.Google Scholar
Page, R. D. M. (1996) Treeview: an application to display phylogenetic trees on personal computers. Computer Applied Biosciences 12: 357358.Google ScholarPubMed
Poelt, J. & Gärtner, G. (1992) Gypsoplaca macrophylla, eine Flechte winterkalter Halbwüsten in den Alpen. Herzogia 9: 229237.CrossRefGoogle Scholar
Rodriguez, F., Oliver, J. L., Marin, A. & Medina, J. R. (1990) The general stochastic-model of nucleotide substitution. Journal of Theoretical Biology 142: 485501.CrossRefGoogle ScholarPubMed
Schmidt, H. A., Strimmer, K., Vingron, M. & von Haeseler, A. (2002) TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502504.CrossRefGoogle ScholarPubMed
Shimodaira, H. & Hasegawa, M. (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution 16: 11141116.CrossRefGoogle Scholar
Spribille, T. & Printzen, C. (2007) Lecidea rubrocastanea, a new lichen species from conifer bark and wood in interior western North America (Lecanorales, lichenized ascomycetes). Lichenologist 39: 339347.CrossRefGoogle Scholar
Strimmer, K. & Rambaut, A. (2002) Inferring confidence sets of possibly misspecified gene trees. Proceedings of the Royal Society of London, Series B 269: 137142.CrossRefGoogle ScholarPubMed
Thompson, J. D., Higgins, D. G. & Gibson, T. J. (1994) CLUSTAL-W – improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 46734680.CrossRefGoogle ScholarPubMed
Timdal, E. (1990) Gypsoplacaceae and Gypsoplaca, a new family and genus of squamiform lichens. Bibliotheca Lichenologica 38: 419427.Google Scholar
Wirtz, N., Printzen, C. & Lumbsch, H. T. (2008) The delimitation of Antarctic and bipolar species of neuropogonoid Usnea (Ascomycota, Lecanorales): a cohesion approach of species recognition for the Usnea perpusilla complex. Mycological Research 112: 472484.CrossRefGoogle ScholarPubMed
Zhou, S. & Stanosz, G. R. (2001) Primers for amplification of mt SSU rDNA, and a phylogenetic study of Botryosphaeria and associated anamorphic fungi. Mycological Research 105: 10331044.CrossRefGoogle Scholar
Zoller, S., Scheidegger, C. & Sperisen, C. (1999) PCR primers for the amplification of mitochondrial small subunit ribosomal DNA of lichen-forming ascomycetes. Lichenologist 31: 511516.CrossRefGoogle Scholar
Zwickl, D. J. (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. Thesis, University of Texas at Austin.Google Scholar