Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T20:09:01.023Z Has data issue: false hasContentIssue false

Corticolous lichens as environmental indicators of natural sulphur emissions near the sulphur mine El Vinagre (Cauca, Colombia)

Published online by Cambridge University Press:  19 February 2016

David DÍAZ ESCANDÓN
Affiliation:
Grupo de Ecología y Diversidad Vegetal, Universidad del Valle, Facultad de Ciencias Naturales, Departamento de Biología, Cali, Colombia, Calle 13 N.º 100-00. Email: ediersot@gmail.com
Edier SOTO MEDINA
Affiliation:
Grupo de Ecología y Diversidad Vegetal, Universidad del Valle, Facultad de Ciencias Naturales, Departamento de Biología, Cali, Colombia, Calle 13 N.º 100-00. Email: ediersot@gmail.com
Robert LÜCKING
Affiliation:
Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA
Philip A. SILVERSTONE SOPKIN
Affiliation:
Grupo de Ecología y Diversidad Vegetal, Universidad del Valle, Facultad de Ciencias Naturales, Departamento de Biología, Cali, Colombia, Calle 13 N.º 100-00. Email: ediersot@gmail.com

Abstract

The aim of this study was to evaluate the spatial effect of a natural source of sulphur pollution on the species diversity, richness and distribution of corticolous lichens in a páramo zone at the mine ‘El Vinagre’ (Puracé, Cauca, Colombia). Three zones at different distances from the pollution source were established: zone 1 with a high degree of contamination, a potentially mildly affected or transitional zone 2, and a zone 3 free of disturbance. In each zone, 10 phorophytes of Weinmannia microphylla (Cunoniaceae) were sampled, and all lichens in a 150 cm vertical transect 50 cm above the ground were collected and identified. Phorophyte parameters were measured (bark pH and diameter at breast height) and the samples were georeferenced. In order to evaluate the impact on lichens, non-metric multidimensional scaling (NMS) and indicator species analysis were carried out. ANOVA and Spearman correlations were performed to assess the relationships of environmental and tree variables between zones and with lichen community structure. The index of atmospheric purity (IAP) and the environmental rating factor (FCA) were evaluated for the three zones. In total, 104 lichen species were recorded, of which 72 were identified to species, 17 to genus, and four to family; 11 samples could not be identified. NMS clustered samples according to zone and the main axis which were correlated with bark pH and distance from pollution source. We found eight indicator species characterizing different zones, and four marginally significant indicator species. Using the IAP, we established three isocontamination areas, with zones 2 and 3 classified as more or less pristine zones and zone 1 as a polluted zone (supported by bark pH as a proxy for current pollution). Diversity was lowest in zone 1, closest to the pollution source, and lichen species composition differed between zones. Differences between lichens in zones 2 and 3 appear mostly unrelated to the current pollution source and might be more related to historical differences in impact from a 20-year-old pollution source.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Álvarez-Castro, J. F. & Pridybailo-Chekan, G. (2010) Corrosión atmosférica en el volcán Poás, proyecto TROPICORR. Tecnología en Marcha 18: 126133.Google Scholar
Azócar, A. & Monasterio, M. (1980) Estudio de la Variabilidad meso y micro climática en el Páramo de Mucubají. In Estudios Ecológicos en los Páramos Andinos (M. Monasterio, ed): 255262. Mérida: Editorial de la Universidad de Los Andes.Google Scholar
Bargagli, R. & Barghigiani, C. (1991) Lichen biomonitoring of mercury emission and deposition in mining, geothermal and volcanic areas of Italy. Environmental Monitoring and Assessment 16: 265275.Google Scholar
Barreno, E. & Pérez-Ortega, S. (2003) Líquenes de la Reserva Natural Integral de Muniellos, Asturias. Consejeria de Medio Ambiente, Ordenación del Territorio e Infraestructura del Principado de Asturias. Oviedo: KRK Ediciones.Google Scholar
Belinchón, R., Martínez, I., Escudero, A., Aragón, G. & Valladares, F. (2007) Edge effects on epiphytic communities in a Mediterranean Quercus pyrenaica forest. Journal of Vegetation Science 18: 8190.CrossRefGoogle Scholar
Bretschneider, S. & Marcano, V. (1995) Utilización de líquenes como indicadores de contaminación por metales pesados y otros agentes en el Valle de Mérida. Resumen. I Congreso Venezolano de Ficología. Revista Forestal Venezolana 1: 3536.Google Scholar
Brodo, I. M. (1966) Lichen growth and cities: a study on Long Island, New York. Bryologist 69: 427449.Google Scholar
Cáceres, M. E. S., Lücking, R. & Rambold, G. (2007) Phorophyte specificity and environmental parameters as determinants for species composition, richness and area cover in corticolous crustose lichen communities in the Atlantic rainforest of northeastern Brazil. Mycological Progress 10: 190210.Google Scholar
Castillo, A., Valdes, J., Sibaja, J., Vega, I., Alfaro, R., Morales, J., Esquivel, G., Barrantes, E., Black, P. & Lean, D. (2011) Seasonal and diel patterns of total gaseous mercury concentration in the atmosphere of the Central Valley of Costa Rica. Applied Geochemistry 26: 242248.Google Scholar
Crespo, P., Celleri, R. & Buytaert, W. (2010) Land use change impacts on the hydrology of wet Andean páramo ecosystems. In Status and Perspectives of Hydrology in Small Basins (A. Herrmann & S. Schumann, eds): 7176. Wallingford: IAHS Publication 336.Google Scholar
De Sloover, J. & LeBlanc, F. (1968) Mapping of atmospheric pollution on the basis of lichen sensitivity. In Proceedings of the Symposium on Recent Advances in Tropical Ecology (R. Misra & B. Gopal, eds): 4256. Varanasi, India: International Society for Tropical Ecology.Google Scholar
Eversman, S. (1978) Effects of low-level SO2 on Usnea hirta and Parmelia chlorochroa . Bryologist 81: 368377.CrossRefGoogle Scholar
Garty, J., Kloog, N., Cohen, Y., Wolfson, R. & Karnieli, A. (1997) The effect of air pollution on the integrity of chlorophyll, spectral reflectance response, and on concentrations of nickel, vanadium, and sulphur in the lichen Ramalina duriaei (De Not.) Bagl. Environmental Research 74: 174187.Google Scholar
Gilbert, O. L. (1970) Further studies on the effect of sulphur dioxide on lichens and bryophytes. New Phytologist 69: 605627.CrossRefGoogle Scholar
Grasso, M. F., Clocchiatti, R., Carrot, F., Deschamps, C. & Vurro, F. (1999) Lichens as bioindicators in volcanic areas: Mt. Etna and Vulcano Island (Italy). Environmental Geology 37: 207217.Google Scholar
Grishin, S. Y., Del Moral, R., Krestovm, P. V. & Verkholat, V. P. (1996) Succession following the catastrophic eruption of Ksudach volcano (Kamchatka, 1907). Vegetatio 127: 129153.Google Scholar
Hammer, Ø., Harper, D. A. T. & Ryan, P. D. (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 19 (http://palaeo-electronica.org/2001_1/past/issue1_01.htm)Google Scholar
Harris, E., Mack, R. & Ku, M. S. B. (1987) Death of steppe cryptogams under the ash from Mount St. Helens. American Journal of Botany 74: 12491253.Google Scholar
Hauck, M., Jürgens, S.-R., Brinkmann, M. & Herminghaus, S. (2008) Surface hydrophobicity causes SO2 tolerance in lichens. Annals of Botany 101: 531539.Google Scholar
Hawksworth, D. L. & Rose, F. (1970) Qualitative scale for estimating sulphur dioxide air pollution in England and Wales using epiphytic lichens. Nature 227: 145148.Google Scholar
Hawksworth, D. L. & Rose, F. (1976) Lichens as Pollution Monitors. London: Edward Arnold.Google Scholar
Hawksworth, D. L., Iturriaga, T. & Crespo, A. (2005) Líquenes como bioindicadores inmediatos de contaminación y cambios medio-ambientales en los trópicos. Revista Iberoamericana Micología 22: 7182.CrossRefGoogle Scholar
Hofstede, R. G. M., Coppus, R., Mena, P., Segarra, V. P., Wolf, J. & Sevink, J. (2002) The conservation status of tussock grass páramo in Ecuador. Ecotropicos 15: 318.Google Scholar
James, P. W., Hawksworth, D. L & Rose, F. (1977) Lichen communities in the British Isles: a preliminary conspectus. In Lichen Ecology (M. R. D. Seaward, ed.): 295413. London: Academic Press.Google Scholar
Käffer, M., Martins, S., Alves, C., Pereira, V., Fachelc, J. & Vargas, V. (2011) Corticolous lichens as environmental indicators in urban areas in southern Brazil. Ecological Indicators 11: 13191332.Google Scholar
Kelleher, J. (1972) Rupture zones of large South American earthquakes and some predictions. Journal of Geophysical Research 77: 20872103.Google Scholar
Kirschbaum, U. & Wirth, V. (1997) Les Lichens Bioindicateurs. Stuttgart: Ulmer.Google Scholar
Kricke, R. & Loppi, S. (2002) Bioindication: the I.A.P. Approach. In Monitoring with Lichens –Monitoring Lichens (P. L. Nimis, C. Scheidegger & P. A. Wolseley, eds): 2138. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
LeBlanc, F. & De Sloover, J. L. (1970) Relation between industrialization and the distribution and growth of epiphytic lichens and mosses in Montreal. Canadian Journal of Botany 48: 14851495.CrossRefGoogle Scholar
LeBlanc, F., Rao, D. N. & Corneau, G. (1972) Indices of atmospheric purity and fluoride pollution pattern in Arvida, Quebec. Canadian Journal of Botany 50: 519528.Google Scholar
Lewis-Smith, R. I. L. (1984) Colonization and recovery by cryptogams following recent volcanic activity on Deception Island, South Shetland Islands. British Antarctic Survey Bulletin 62: 2551.Google Scholar
Lewis-Smith, R. I. L. (2005) Extensive colonization of volcanic ash by an unusual form of Peltigera didactyla at Deception Island, maritime Antarctic. Lichenologist 37: 367368.Google Scholar
Loppi, S. (1996) Lichens as bioindicators of geothermal air pollution in central Italy. Bryologist 99: 4148.Google Scholar
Loppi, S. & Bonini, I. (2000) Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt. Amianta, central Italy). Chemosphere 41: 13331336.Google Scholar
Loppi, S., Ivanov, D. & Boccardi, R. (2002) Biodiversity of epiphytic lichens and air pollution in the town of Siena (Central Italy). Environmental Pollution 116: 123128.Google Scholar
Luteyn, J. (1999) Páramos: a checklist of plant diversity, geographical distribution and botanical literature. Memoirs of the New York Botanical Garden 84: 1278.Google Scholar
McCune, B. & Mefford, M. J. (2006) PC-ORD. Multivariate Analysis of Ecological Data. Version 5. Gleneden Beach, Oregon: MjM Software.Google Scholar
McCune, B., Grace, J. B. & Urban, D. L. (2002) Analysis of Ecological Communities. Gleneden Beach, Oregon: MjM Software.Google Scholar
Monasterio, M. (1980) Los Páramos Andinos como región natural. Características biogeográficas generales y afinidad con otras regiones andinas. In Estudios Ecológicos en los Páramos Andinos (M. Monasterio, ed): 1527. Mérida: Editorial de la Universidad de Los Andes.Google Scholar
Moser, T. J., Swafford, J. R. & Nash, T. H. III (1983) Impact of Mount St. Helens’ emissions on two lichen species of south-central Washington. Environmental and Experimental Botany 23: 321329.Google Scholar
Naundorf, G. & Escobar, A. (2006) Caracterización físico química de la laguna artificial termal de alta montaña “Aguas Tibias”, Municipio de Puracé, Cauca. VII Seminario Colombiano de Limnología y I Reunión sobre Ríos y Humedales Neotropicales, 9–15 September, 2006, Ibagué, Colombia.Google Scholar
Nimis, P. L., Scheidegger, C. & Wolseley, P. A. (2002) Monitoring with Lichens – Monitoring Lichens. Dordrecht: Kluwer Academic Publishers.Google Scholar
Ravera, S., Genovesi, V., Falasca, A., Marchetti, M. & Chirici, G. (2010) Lichen diversity of old-growth forests in Molise (central-southern Italy). Accademia Italiana di Scienze Forestali 65: 505517.Google Scholar
Rice, P. M., Pye, L. H., Boldi, R., O’Loughlin, J., Tourangeau, P. C. & Gordon, C. C. (1978) The effects of ‘low level SO2’ exposure sulphur accumulation and various plant life responses of some major grassland species on the ZAPS sites. In Bioenvironmental Impact of a Coal-fired Power Plant. Fourth Interim Report, Colstrip, Montana, December 1978 (E. M. Preston & T. L. Gullett, eds): 494591. Corvallis, Oregon: Corvallis Environmental Research Laboratory & US EPA.Google Scholar
Rivas-Plata, E., Lücking, R. & Lumbsch, H. T. (2008) When family matters: an analysis of Thelotremataceae (Lichenized Ascomycota: Ostropales) as bioindicators of ecological continuity in tropical forests. Biodiversity Conservation 17: 13191351.CrossRefGoogle Scholar
Saipunkaew, W., Wolseley, P., Chimonides, J. & Boonpragob, K. (2004) Lichens as monitors of urban pollution in northern Thailand. In Abstracts of the 5th Symposium of the International Association for Lichenology, 16–21 August, 2004, Tartu, Estonia, pp. 67–68.Google Scholar
Sánchez, I. & Samboní, N. (2000) Incidencia de las Concentraciones de los Cationes y Algunos Parámetros Físico Químicos en Aguas Termales Sobre la Actividad Volcánica del Volcán Puracé, Departamento del Cauca. Popayán, Colombia: Ingeominas.Google Scholar
Scott, M. G., Hutchinson, T. C. & Feth, M. J. (1989) A comparison of the effects on Canadian boreal forest lichens of nitric and sulphuric acids as sources of rain acidity. New Phytologist 111: 663671.Google Scholar
Sillett, S. C., McCune, B., Peck, J. E., Rambo, T. R. & Ruchty, A. (2000) Dispersal limitations of epiphytic lichens result in species dependent on old-growth forests. Applied Ecology 10: 789799.Google Scholar
Sipman, H. J. M. (1989) Lichen zonation in the Parque Los Nevados transect. In La Cordillera Central Colombiana Transecto Parque los Nevados. Studies on Tropical Andean Ecosystems, Vol. 3, (T. van der Hammen & V. J. Alvarez, eds): 461483. Vaduz, Liechtenstein: J. Cramer.Google Scholar
Sipman, H. J. M. (2002) The significance of the Northern Andes for lichens. Botanical Review 68: 8899.Google Scholar
Sipman, H. J. M. (2011) Diversity of lichenized fungi in the tropical Andes. In Climate Change and Biodiversity in the Tropical Andes (S. Herzog, R. Martinez, P. Jørgensen & H. Tiessen): 220224. São José dos Campos, Brazil and Paris, France: Inter-American Institute for Global Change Research (IAI) & Scientific Committee on Problems of the Environment (SCOPE).Google Scholar
Soto Medina, E., Lücking, R. & Bolaños, A. C. (2012) Especificidad de forófito y preferencias microambientales de los líquenes cortícolas en el bosque premontano de la finca Zíngara, Cali, Colombia. Revista de Biología Tropical 60: 843856.Google Scholar
Spier, L., Dobben, H. & Dort, K. (2010) Is bark pH more important than tree species in determining the composition of nitrophytic or acidophytic lichen floras? Environmental Pollution 158: 36073611.Google Scholar
StatSoft (2004) STATISTICA 7.0. (Accessed: 3 July 2011, http://www.statsoft.com.au/v7.htm).Google Scholar
Sugiyama, K., Kurokawa, S. & Okada, G. (1976) Studies on lichens as a bioindicator of air pollution. Correlation of Parmelia tinctorum with SO2 air pollution. Japanese Journal of Ecology 26: 209212.Google Scholar
Sykes, L. (1971) Aftershock zones of great earthquakes, seismicity gaps, and earthquake prediction for Alaska and the Aleutians. Journal of Geophysical Research 76: 80218041.Google Scholar
Thomas, M. D. (1961) Effects of air pollution on plants. In Air Pollution. WHO Monograph Series, No. 46: 233278. New York: Columbia University Press.Google Scholar
United States Forest Service (2013) National Lichens & Air Quality Database and Clearinghouse. Understanding air pollutants and air pollution effects on lichens: a Pacific Northwest perspective. http://gis.nacse.org/lichenair/index.php?page=airpollution#Sresponse (Accessed 5 March 2013).Google Scholar
Varrica, D., Aiuppa, A. & Dongarra, G. (2000) Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily). Environmental Pollution 108: 153162.Google Scholar
Wetmore, C. M. (1981) Lichens and air quality in Big Bend National Park, Texas. Bryologist 84: 426433.Google Scholar