Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-12T12:10:32.616Z Has data issue: false hasContentIssue false

Investigation of the importance of rock chemistry for saxicolous lichen communities of the New Idria serpentinite mass, San Benito County, California, USA

Published online by Cambridge University Press:  24 August 2012

Nishanta RAJAKARUNA
Affiliation:
College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609, USA. Email: nrajakaruna@coa.edu
Kerry KNUDSEN
Affiliation:
Department of Botany & Plant Sciences, 2117 Bachelor Hall, University of California, Riverside, CA 92521, USA.
Alan M. FRYDAY
Affiliation:
Herbarium, Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA.
Ryan E. O'DELL
Affiliation:
United States Bureau of Land Management Hollister Field Office, 20 Hamilton Ct., Hollister, CA 95023, USA.
Nathaniel POPE
Affiliation:
Department of Entomology, University of California Davis, One Shields Avenue, CA 95616, USA.
Fred C. OLDAY
Affiliation:
College of the Atlantic, 105 Eden Street, Bar Harbor, ME 04609, USA. Email: nrajakaruna@coa.edu
Suzie WOOLHOUSE
Affiliation:
Department of Biological Sciences, One Washington Square, San José State University, San José, CA 95192, USA.

Abstract

Although several lichen inventories exist for European ultramafic sites, only four surveys of serpentine lichens for North America have been published to date. Of those, only one has been conducted in California. We conducted a survey of saxicolous lichens from ultramafic rocks (including nephrite, partially serpentinized peridotite, and serpentinite) and non-ultramafic rocks (including silica-carbonate, shale, and sandstone) at the New Idria serpentinite mass, San Benito County, California. X-ray Fluorescence Analysis of the rocks from which the lichens were collected revealed significant elemental differences between the ultramafic and non-ultramafic rocks for 26 of the 32 major and trace elements analyzed. We identified a total of 119 species of lichenized and lichenicolous fungi; 60 species were restricted to ultramafic substrata, 19 to silica-carbonate, and 15 to shale and sandstone. Only 4 species were shared in common. A permutational multivariate analysis of variance (perMANOVA) test revealed significant differences in lichen assemblages between ultramafic and non-ultramafic rocks at the species level but not at the generic level, with species richness (alpha-diversity) significantly greater at the ultramafic sites. We suggest that, although differences in geochemistry clearly influence the lichen community composition, other factors, especially substratum age and the physical characteristics of the rock, are of equal, if not greater, importance. Of all the species collected, six, Buellia aethalea, B. ocellata, Caloplaca oblongula, Rhizocarpon saurinum, Thelocarpon laureri, and Trapelia obtegens, are reported new to California, along with an apparently previously undescribed Solenopsora sp. The rest of the species encountered are relatively frequent in the lichen flora of southern and central California, except Aspicilia praecrenata, a rare California endemic that we collected on both ultramafic and non-ultramafic rocks.

Type
Research Article
Copyright
Copyright © British Lichen Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, M. S. & Issa, A. A. (2000) Effect of manganese and calcium deficiency on the growth and oxygen exchange of Scenedesmus intermedius cultured for successive generations. Folia Microbiologica 45: 353358.CrossRefGoogle ScholarPubMed
Alexander, E. B., Coleman, R. G., Keeler-Wolf, T. & Harrison, S. P. (2007) Serpentine Geoecology of Western North America. New York: Oxford University Press.Google Scholar
Anacker, B. L., Whittall, J. B., Goldberg, E. B. & Harrison, S. P. (2011) Origins and consequences of serpentine endemism in the California flora. Evolution 65: 365376.CrossRefGoogle ScholarPubMed
Anderson, M. J. (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 3246.Google Scholar
Bates, J. W. (1978) The influence of metal availability on the bryophyte and macrolichen vegetation of four rock types on Skye and Rhum. Journal of Ecology 66: 457482.CrossRefGoogle Scholar
Boyle, A. P., McCarthy, P. M. & Stewart, D. (1987) Geochemical control of saxicolous lichen communities on the Creggaun Gabbro, Letterfrack, Co. Galway, western Ireland. Lichenologist 19: 307317.Google Scholar
Briscoe, L. R. E., Harris, T. B., Dannenberg, E., Broussard, W., Olday, F. C. & Rajakaruna, N. (2009) Bryophytes of adjacent serpentine and granite outcrops on the Deer Isles, Maine, USA. Rhodora 111: 120.CrossRefGoogle Scholar
Brodo, I. M. (1973) Substrate ecology. In The Lichens (Ahmadjian, V. & Hale, M. E., eds): 401441. New York: Academic Press.CrossRefGoogle Scholar
Brooks, R. R. (1987) Serpentine and its Vegetation: A Multidisciplinary Approach. Portland, Oregon: Dioscorides Press.Google Scholar
Coleman, R. G. & Jove, C. (1992) Geological origin of serpentinites. In The Vegetation of Ultramafic (Serpentine) Soils (Baker, A. J. M., Proctor, J. & Reeves, R. D., eds): 117. Andover, Hampshire: Intercept.Google Scholar
Esslinger, T. L. (2011) A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada. North Dakota State University: http://www.ndsu.edu/pubweb/~esslinge/chcklst/chcklst7.htm [First Posted 1 December 1997, Most Recent Version (#17) 16 May 2011], Fargo, North Dakota.Google Scholar
Faith, D. P., Minchin, P. R. & Belbin, L. (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69: 5768.CrossRefGoogle Scholar
Favero-Longo, S. E. & Piervittori, R. (2009) Measuring the biodiversity of saxicolous lichens above timberline with reference to environmental factors: the case-study of a Natura 2000 site of western Alps. Phytocoenologia 39: 5178.Google Scholar
Favero-Longo, S. E., Isocrono, D. & Piervittori, R. (2004) Lichens and ultramafic rocks: a review. Lichenologist 36: 391404.CrossRefGoogle Scholar
Favero-Longo, S. E., Castelli, D., Salvadori, O., Belluso, E. & Piervittori, R. (2005) Pedogenetic action of the lichens Lecidea atrobrunnea, Rhizocarpon geographicum gr. and Sporastatia testudinea on serpentinized ultramafic rocks in an alpine environment. International Biodeterioration and Biodegradation 56: 1727.Google Scholar
García, L. V. (2003) Controlling the false discovery rate in ecological research. Trends in Ecology and Evolution 18: 553554.Google Scholar
Garty, J. & Galun, M. (1974) Selectivity in lichen-substrate relationships. Flora 163: 530534.CrossRefGoogle Scholar
Gilbert, C. A. (1984) Prospectors, capitalists and bandits: the history of the New Idria Quicksilver Mine, 1854–1972. M.S. thesis, San José State University.Google Scholar
Gilbert, O. L. & James, P. W. (1987) Field meeting on the Lizard Peninsula, Cornwall. Lichenologist 19: 319334.Google Scholar
Hafellner, J. (1991) Die Flechtenflora eines hochgelegenen Serpentinitstockes in den Ostalpen (Österreich, Steiermark). Mitteilungen der Naturwissenschaftlichen Vereines für Steiermark 121: 95106.Google Scholar
Harris, T. B., Olday, F. C. & Rajakaruna, N. (2007) Lichens of Pine Hill, a peridotite outcrop in Eastern North America. Rhodora 109: 430447.CrossRefGoogle Scholar
Harrison, S. P. & Rajakaruna, N. (eds). (2011) Serpentine: Evolution and Ecology in a Model System. Berkeley, California: University of California Press.Google Scholar
Hauck, M., Huneck, S., Elix, J. A. & Paul, A. (2007) Does secondary chemistry enable lichens to grow on iron-rich substrates? Flora 202: 471478.CrossRefGoogle Scholar
Hausdorf, B. & Hennig, C. (2005) The influence of recent geography, palaeogeography and climate on the composition of the fauna of the central Aegean Islands. Biological Journal of the Linnaean Society 84: 785795.Google Scholar
Hegetschweiler, C. & Stizenberger, [E.] (1887) Mittheilung über lichenen auf ungewöhnlichem substrate. Flora 70: 430431.Google Scholar
Hothorn, T., Hornik, K., van de Wiel, M. A. & Zeileis, A. (2008) Implementing a class of permutation tests: the coin package. Journal of Statistical Software 28: 123.Google Scholar
Index Fungorum Partnership. (2010+) Index Fugorum. A community resource. CABI, CBS, and Landcare Research, custodians. CABI, Wallingford, Oxfordshire, UK; CBS KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands; and Manaaki Whenua – Landcare Research, Lincoln, New Zealand. Website (http://www.indexfungorum.org).Google Scholar
Kay, K. M., Ward, K. L., Watt, L. R. & Schemske, D. W. (2011) Plant speciation. In Serpentine: Evolution and Ecology in a Model System (Harrison, S. P. & Rajakaruna, N., eds): 7196. Berkeley, California: University of California Press.Google Scholar
Kirk, P. M., Cannon, P. F., Minter, D. W. & Stalpers, J. A. (eds) (2011) Dictionary of the Fungi 10th edn. Egham, UK: CAB International.Google Scholar
Kossowska, M. (2001) Epilithic lichens on serpentinite rocks in Poland. Polish Botanical Journal 46: 191197.Google Scholar
Kruckeberg, A. R. (1986) An essay: the stimulus of unusual geologies for plant speciation. Systematic Botany 11: 455463.CrossRefGoogle Scholar
Lange, O. L. & Ziegler, H. (1963) Der Schwermetallgehalt von Flechten aus dem Acarosporetum sinopicae auf Erzschlackenhalden des Harzes. I. Eisen und Kupfer. Mitteil. der Florist-soziologischen Arbeitsgemeinschaft, N. F. 10: 156183.Google Scholar
Lazarus, B. E., Richards, J. H., Claassen, V. P., O'Dell, R. E. & Ferrell, M. A. (2011) Species specific plant-soil interactions influence plant distribution on serpentine soils. Plant and Soil 342: 327344.Google Scholar
Legendre, P. (2007) One-way ANOVA with permutation test. Website (http://www.bio.umontreal.ca/Casgrain/prog/labo/fonctions_r/anova.1way.R.zip)Google Scholar
Lendemer, J. C., Knudsen, K. & Coppins, B. J. (2009) Further notes on the genus Ramonia in California: the first modern record of R. ablephora and the description of R. extensa sp. nov. Opuscula Philolichenum 7: 191194.Google Scholar
Lepp, N. W. (2001) Bryophytes and pteridophytes. In Metals in the Environment—Analysis by Biodiversity (Prasad, M. N. V., ed): 199204. New York: Marcel Dekker.Google Scholar
Marschner, H. (2002) Mineral Nutrition of Higher Plants. San Diego: Academic Press.Google Scholar
McArdle, B. H. & Anderson, I. C. (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290297.Google Scholar
Moniri, M. H., Kamyabi, S. & Fryday, A. M. (2010) Rhizocarpon saurinum new to Asia, and other reports of Rhizocarpon species from Razavi Khorasan Province, Iran. Mycologia Balcanica 6: 8992.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B. & Kent, J. (1999) Biodiversity hotspots for conservation priorities. Nature 403: 853858.Google Scholar
O'Dell, R. E. & Rajakaruna, N. (2011) Intraspecific variation, adaptation, and evolution. In Serpentine: Evolution and Ecology in a Model System (Harrison, S. P. & Rajakaruna, N., eds): 97137. Berkeley, California: University of California Press.Google Scholar
Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Simpson, G. L., Solymos, P., Stevens, M. H. H. & Wagner, H. (2011) R package version 1.15–3. Community Ecology Package, vegan. URL: http://vegan.r-forge.r-project.org/ Google Scholar
Paukov, A. G. (2009) The lichen flora of serpentine outcrops in the Middle Urals of Russia. Northeastern Naturalist 16: 341350.CrossRefGoogle Scholar
Piervittori, R., Isocrono, D., Favero-Longo, S. E. & De Nicolò, A. (2004) Indagini floristiche ed ecologichesui licheni degli ambienti ofiolitici del Parco Naturale del Mont Avic: influenza della naturageologica del substrato sulle comunità licheniche rupicole e terricole. Revue Valdôtain Histoire Naturelle 58: 5164.Google Scholar
Purvis, O. W. (1984) The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. Lichenologist 16: 197204.Google Scholar
Purvis, O. W. (1996) Interactions of lichens with metals. Science Progress 79: 283309.Google Scholar
Purvis, O. W. & Halls, C. (1996) A review of lichens in metal-enriched environments. Lichenologist 28: 571601.CrossRefGoogle Scholar
Purvis, O. W. & Pawlik-Skowrońska, B. (2008) Lichens and metals. In Stress in Yeasts and Filamentous Fungi. British Mycological Society Symposium Series (Avery, S., Stratford, M. & van West, P., eds): 175200. Amsterdam: Elsevier & Academic Press.CrossRefGoogle Scholar
R Development Core Team. (2011) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.Google Scholar
Rajakaruna, N. (2004) The edaphic factor in the origin of species. International Geology Review 46: 471478.Google Scholar
Rajakaruna, N. & Boyd, R. S. (2008) The edaphic factor. In The Encyclopedia of Ecology. Vol. 2 (Jorgensen, S. E. & Fath, B., eds): 12011207. Oxford: Elsevier.CrossRefGoogle Scholar
Rajakaruna, N., Harris, T. B. & Alexander, E. B. (2009) Serpentine geoecology of eastern North America: a review. Rhodora 111: 21108.Google Scholar
Rajakaruna, N., Harris, T. B., Clayden, S., Dibble, A. & Olday, F. S. (2011) Lichens of Callahan Mine, a copper and zinc-enriched Superfund site in Brooksville, Maine, U.S.A. Rhodora 113: 131.CrossRefGoogle Scholar
Richardson, D. H. S. (1995) Metal uptake in lichens. Symbiosis 18: 119127.Google Scholar
Rune, O. (1954) Notes on the flora of the Gaspé Peninsula. Svensk Botanisk Tidskrift 48: 117138.Google Scholar
Ryan, B. D. (1988) Marine and maritime lichens on serpentine rock on Fidalgo Island, Washington. Bryologist 91: 186190.CrossRefGoogle Scholar
Shaw, A. J., Antonovics, J. & Anderson, L. E. (1987) Inter- and intraspecific variation of mosses in tolerance to copper and zinc. Evolution 41: 13121325.Google Scholar
Shimizu, A. (2004) Community structure of lichens in the volcanic highlands of Mt. Tokachi, Hokkaido, Japan. Bryologist 107: 141151.CrossRefGoogle Scholar
Sigal, L. L. (1975) Lichens and mosses of California serpentine. M.A. thesis, San Fransisco State University, California.Google Scholar
Sigal, L. L. (1989) The lichens of serpentine rocks and soils in California. Mycotaxon 34: 221238.Google Scholar
Sirois, L., Lutzoni, F. & Grandtner, M. M. (1988) Les lichens sur serpentine et amphibolite du plateau du mont Albert, Gaspésie, Québec. Canadian Journal of Botany 66: 851862.CrossRefGoogle Scholar
Van Baalen, M. R. (1995) The New Idria serpentinite. Ph.D. thesis, Harvard University.Google Scholar
von Brackel, W. (2007) Zur Flechtenflora der Serpentinitfelsen in Nordostbayern. Hoppea, Denkschriften der Regensburgischen Botanischen Gesellschaft 68: 253268.Google Scholar
Werner, R. G. (1956) Etudes ecologiques sur les lichens des terrains schisteux maritimes. Bulletin de la Société des Sciences de Nancy, n. ser. 15: 137152.Google Scholar
Williamson, S. D. & Balkwill, K. (2006) Factors determining levels of threat to serpentine endemics. South African Journal of Botany 72: 619626.CrossRefGoogle Scholar
Wilson, M. J. (1995) Interactions between lichens and rocks: a review. Cryptogamic Botany 5: 299305.Google Scholar
Wilson, M. J., Jones, D. & McHardy, W. J. (1981) The weathering of serpentinite by Lecanora atra . Lichenologist 13: 167176.CrossRefGoogle Scholar
Wirth, V. (1972) Die Silikatflechten-Gemeinschaften in Ausseralpinen Zentraleuropa. Dissertationes Botanicae 17: 1305.Google Scholar