Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-12T00:43:52.966Z Has data issue: false hasContentIssue false

Gas chromatographic analysis to compare the fatty acid composition of fifteen lichen species, with a focus on Stereocaulon

Published online by Cambridge University Press:  28 July 2016

Thi Huyen VU
Affiliation:
UMR CNRS 6226 ISCR, Equipe PNSCM, Université de Rennes 1, 35043 Rennes Cedex, France
Daniel CATHELINE
Affiliation:
Laboratoire de Biochimie, Institut National de la Recherche Agronomique, USC 1378, Agrocampus-Ouest, 35042 Rennes Cedex, France
David DELMAIL
Affiliation:
UMR CNRS 6226 ISCR, Equipe PNSCM, Université de Rennes 1, 35043 Rennes Cedex, France
Joël BOUSTIE
Affiliation:
UMR CNRS 6226 ISCR, Equipe PNSCM, Université de Rennes 1, 35043 Rennes Cedex, France
Philippe LEGRAND
Affiliation:
Laboratoire de Biochimie, Institut National de la Recherche Agronomique, USC 1378, Agrocampus-Ouest, 35042 Rennes Cedex, France
Françoise LOHÉZIC-LE DÉVÉHAT*
Affiliation:
UMR CNRS 6226 ISCR, Equipe PNSCM, Université de Rennes 1, 35043 Rennes Cedex, France

Abstract

The composition of fatty acids (FAs) is known to discriminate families within genera of bacteria, fungi, octocorals and algae. Here, we applied the more sensitive gas chromatographic (GC) analysis to investigate the taxonomic value of using FA composition to discriminate 15 species of lichen, including three chlorolichens (two Cladonia species and Stereocaulon scutelligerum), nine tripartite lichens (Stereocaulon species) and three cyanolichens (Lichina pygmaea, Collema cristatum, Peltigera membranacea). One macroscopic cyanobacterium (Nostoc sp.), corresponding to the photobiont partner of Peltigera and Collema cyanolichens, was included for comparison. Five lipid extraction methods were evaluated, using Stereocaulon scutelligerum. Shaking at 80 °C with chloroform/methanol (2:1, v/v) was the most efficient and reproducible method. The total FA composition of the 16 species was compared, using GC coupled with flame ionization detection or mass spectrometry. A statistical hierarchical cluster analysis was used to determine the similarity between the FA profiles, based on total, saturated, unsaturated and branched-chain FAs (BCFAs). The BCFA profile allowed a distinction between the Stereocaulon species and the cyanolichens, in contrast to all the other types of FAs. A detailed characterization of eight FA subclasses, provided by the GC analysis, suggested a preferential pathway for the biogenesis of unsaturated FAs through desaturases, which was especially favoured in the cyanolichens.

Type
Articles
Copyright
© British Lichen Society, 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O. R. (2014) Microbial communities associated with tree bark foliose lichens: a perspective on their microecology. Journal of Eukaryotic Microbiology 61: 17.Google Scholar
AOCS Lipid Library ( undated) Available from: http://lipidlibrary.aocs.org (accessed 8 October 2015).Google Scholar
Bachelor, F., King, G. & Richardson, J. (1990) Phlebic acids C and D, lichen acids from Peltigera aphthosa . Phytochemistry 29: 601604.Google Scholar
Cardinale, M., Puglia, A. M. & Grube, M. (2006) Molecular analysis of lichen-associated bacterial communities. FEMS Microbiology Ecology 57: 484495.CrossRefGoogle ScholarPubMed
Culberson, W. L. (1969) The use of chemistry in the systematics of the lichens. Taxon 18: 152166.Google Scholar
Cyberlipid Center ( undated) Available from: http://www.cyberlipid.org (accessed 8 October 2015).Google Scholar
Delmail, D., Labrousse, P. & Botineau, M. (2011) The most powerful multivariate normality test for plant genomics and dynamics data sets. Ecological Informatics 6: 125126.Google Scholar
Dembitsky, V. M. (1992) Lipids of lichens. Progress in Lipid Research 31: 373397.Google Scholar
Dembitsky, V. M. & Srebnik, M. (2002) Natural halogenated fatty acids: their analogues and derivatives. Progress in Lipid Research 41: 315367.Google Scholar
Dembitsky, V. M., Bychek, I. A., Shustov, M. V. & Rozentsvet, O. A. (1991) Phospholipid and fatty acid composition of some lichen species. Phytochemistry 30: 837839.CrossRefGoogle Scholar
Dembitsky, V. M., Rezanka, T. & Bychek, I. A. (1992 a) Fatty acids and phospholipids from lichens of the order. Lecanorales. Phytochemistry 31: 851853.Google Scholar
Dembitsky, V. M., Rezanka, T. & Bychek, I. A. (1992 b) Lipid composition of some lichens. Phytochemistry 31: 16171620.Google Scholar
Dembitsky, V. M., Rezanka, T. & Bychek, I. A. (1994) Seasonal variation of lipids and fatty acids from tree-growing lichens of the genus Physcia . Phytochemistry 36: 601608.Google Scholar
Dertien, B. K., De Kok, L. J. & Kuiper, P. J. C. (1977) Lipid and fatty acid composition of tree-growing and terrestrial lichens. Physiologia Plantarum 40: 175180.CrossRefGoogle Scholar
Finegold, L., Singer, M. A., Federle, T. W. & Vestal, J. R. (1990) Composition and thermal properties of membrane lipids in cryptoendolithic lichen microbiota from Antarctica. Applied and Environmental Microbiology 54: 11911194.Google Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957) A simple method for the isolation and purification of total lipids from animal tissues. Canadian Journal of Biochemistry and Physiology 37: 497509.Google Scholar
Frey-Klett, P., Burlinson, P., Deveau, A., Barret, M., Tarkka, M. & Sarniguet, A. (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiology and Molecular Biology Reviews 75: 583609.Google Scholar
Gonzalez, A. G., Rodriguez Pèrez, E. M., Hernandez Padron, C. E. & Barrera, J. B. (1992) Chemical constituents of the lichen Stereocaulon azoreum . Verlag der Zeitschrift für Naturforschung C 47: 503507.Google Scholar
González, I., Ayuso-Sacido, A., Anderson, A. & Genilloud, O. (2005) Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. FEMS Microbiology Ecology 54: 401415.CrossRefGoogle ScholarPubMed
Goss, R. & Wilhelm, C. (2009) Lipids in algae, lichens and mosses. In Lipids in Photosynthesis: Essential and Regulatory Functions (H. Wada & N. Murata, eds): 117135. Berlin: Springer.Google Scholar
Grube, M., Cardinale, M., de Castro, J. V., Müller, H. & Berg, G. (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. The ISME Journal 3: 11051115.Google Scholar
Guschina, I. A., Dobson, G. & Harwood, J. L. (2003) Lipid metabolism in cultured lichen photobionts with different phosphorus status. Phytochemistry 64: 209217.Google Scholar
Hanus, L. O., Temina, M. & Dembitsky, V. (2008) Biodiversity of the chemical constituents in the epiphytic lichenized ascomycete Ramalina lacera grown on difference substrates Crataegus sunaicus, Pinus halepenis, and Quercus calliprios . Biomedical Papers of the Medical Faculty of the University Palacky Olomouc, Czechoslovakia 152: 203208.Google Scholar
Hawksworth, D. L. (1976) Lichen chemotaxonomy. In Lichenology: Progress and Problems (D. Brown, D. L. Hawksworth & R. H. Bailey, eds): 139184. London: Academic Press.Google Scholar
Hodkinson, B. P., Gottel, N. R., Schadt, C. W. & Lutzoni, F. (2012) Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. Environmental Microbiology 14: 147161.CrossRefGoogle ScholarPubMed
Imbs, A. B. & Dautova, T. N. (2008) Use of lipids for chemotaxonomy of Octocorals (Cnidaria: Alcyonaria). Biochemistry 34: 174178.Google Scholar
Kaneda, T. (1963) Biosynthesis of branched chain fatty acids. Journal of Biological Chemistry 238: 12291235.Google Scholar
Kaneda, T. (1977) Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriological Reviews 41: 391418.Google Scholar
Kaneda, T. (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiology and Molecular Biology Reviews 55: 288302.Google Scholar
Kock, J. L. F. & Botha, A. (1998) Fatty acids in fungal taxonomy. In Chemical Fungal Taxonomy (J. C. Frisvad, ed.): 219249. New York: CRC Press.Google Scholar
Kumari, P., Bijo, A. J., Mantri, V. A., Reddy, C. R. K. & Jha, B. (2013) Fatty acid profiling of tropical marine macroalgae: an analysis from chemotaxonomic and nutritional perspectives. Phytochemistry 86: 4456.Google Scholar
Lamb, I. M. (1951) On the morphology, phylogeny, and taxonomy of the lichen genus Stereocaulon. Canadian Journal of Botany 29: 522584.CrossRefGoogle Scholar
Lamb, I. M. (1977) A conspectus of the lichen genus Stereocaulon (Schreb.) Hoffm. Journal of the Hattori Botanical Laboratory 43: 191355.Google Scholar
Matsumoto, G. I., Nienow, J. A., Friedmann, E. I., Sekiya, E. & Ocampo-Friedmann, R. (2004) Biogeochemical features of lipids in endolithic microbial communities in the Ross Desert (McMurdo Dry Valleys), Antarctica. Cellular and Molecular Biology 50: 591604.Google Scholar
Nylander, W. (1866) Circa novum in studia Lichenum critericum chemicum. Flora 49: 198201.Google Scholar
Parrot, D., Intertaglia, L., Grübe, M., Suzuki, M. T. & Tomasi, S. (2014) Lichens: a bacterial hot-spot for the production of bioactive compounds. In Gordon Research Seminar, 1–2 March, 2014, Ventura, California, pp. 1–2.Google Scholar
Ratledge, C. & Wilkinson, S. G. (1988) Microbial Lipids. London: Academic Press.Google Scholar
Reis, R. A., Iacomini, M., Gorin, P. A. J., Mera de Souza, L., Grube, M., Cordeiro, L. M. C. & Sassaki, G. L. (2005) Fatty acid composition of the tropical lichen Teloschistes flavicans and its cultivated symbionts. FEMS Microbiology Letters 247: 16.Google Scholar
Rezanka, T. & Dembitsky, V. M. (1999) Fatty acids of lichen species from Tian Shan Mountains. Folia Microbiologica 44: 643646.CrossRefGoogle Scholar
Sahu, A., Pancha, I., Jain, D., Paliwal, C., Ghosh, T., Patidar, S., Bhattacharya, S. & Mishra, S. (2013) Fatty acids as biomarkers of microalgae. Phytochemistry 89: 5358.Google Scholar
Sassaki, G. L., Machado, M. J., Tischer, C. A, Gorin, P. A. & Iacomini, M. (1999) Glycosyldiacylglycerolipids from the lichen Dictyonema glabratum . Journal of Natural Products 62: 844847.Google Scholar
Sassaki, G. L., Cruz, L. M., Gorin, P. A. & Lacomini, M. (2001) Fatty acid composition of lipids present in selected lichenized fungi: a chemotyping study. Lipids 36: 167174.Google Scholar
Solberg, Y. (1987) Chemical constituents of the lichens Cetraria delisei, Lobaria pulmonaria, Stereocaulon tomentosum and Usnea hirta . Journal of the Hattori Botanical Laboratory 63: 357366.Google Scholar
Spribille, T., Klug, B. & Mayrhofer, H. (2011) A phylogenetic analysis of the boreal lichen Mycoblastus sanguinarius (Mycoblastaceae, lichenized Ascomycota) reveals cryptic clades correlated with fatty acid profiles. Molecular Phylogenetics and Evolution 59: 603614.Google Scholar
Tabacchi, R., Tsoupras, G. & Huneck, S. (1987) Lichen substances. No. 148. Steroids and nortriterpenoids from lichens. Journal of the Hattori Botanical Laboratory 63: 351355.Google Scholar
Temina, M., Levitsky, D. O. & Dembitsky, V. M. (2010) Chemical constituents of the epiphytic and lithophilic lichens of the genus Collema. Records of Natural Products 1: 7986.Google Scholar
Yamamoto, Y. & Watanabe, A. (1974) Fatty acid composition of lichens and their phyco- and mycobionts. Journal of General and Applied Microbiology 86: 8386.Google Scholar
Zelles, L. (1999) Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biology and Fertility of Soils 29: 111129.Google Scholar
Supplementary material: File

Vu supplementary material

Vu supplementary material 1

Download Vu supplementary material(File)
File 218.6 KB