Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T02:02:17.476Z Has data issue: false hasContentIssue false

The combination of cold and hot components in the energy spectra of electrons scattered by relativistically intense laser pulses with various transverse distributions of amplitude

Published online by Cambridge University Press:  22 December 2016

O.B. Shiryaev*
Affiliation:
Department of Coherent and Nonlinear Optics, General Physics Institute of the Russian Academy of Science, 38 Vavilov Street, Box 117942, Moscow, Russia Medicobiologic Faculty, N.I. Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Box 117997, Moscow, Russia
*
Address correspondence and reprint requests to: O.B. Shiryaev, Department of Coherent and Nonlinear Optics, General Physics Institute of the Russian Academy of Science, 38 Vavilov Street, Box 117942, Moscow, Russia. E-mail: shiryaev@kapella.gpi.ru

Abstract

The energy spectra of a sparse ensemble of electrons scattered by relativistically intense laser pulses are studied numerically by solving the relativistic Newton equations with the Lorentz force generated by an electromagnetic envelope in vacuum. The expressions for the envelope describe focused optical fields, include significant short-pulse corrections, and afford the representation of laser radiation with various types of transverse distributions of amplitude. The dependence of the character of the electron energy spectra on the type of the transverse distribution of laser amplitude is explored. For Gaussian pulses, the electron energy spectra within specific angular ranges tend to either include a relativistic maximum while being localized around it or to have the shapes of evanescent distributions dominated by the cold component. Conversely, the energy spectra of electrons ejected into certain angular ranges by laser pulses having first-order Laguerre profiles combine pronounced cold components and structured strongly relativistic features. The presumed laser pulse transverse structure and the shapes of the calculated electron energy spectra for first-order Laguerre amplitude distributions are shown to match, qualitatively, those reported in a recent experimental study by Kalashnikov et al. in 2015, which revealed the electron energy spectra spanning both the sub-relativistic and the markedly relativistic energy domains.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

August, S., Strickland, D., Meyerhofer, D.D., Chin, S.L. & Eberly, J.H. (1989). Tunneling ionization of noble gases in a high-intensity laser field. Phys. Rev. Lett. 63, 22122215.Google Scholar
Augst, S., Meyerhofer, D.D., Strickland, D. & Chin, S.L. (1991). Laser ionization of noble gases by Coulomb-barrier suppression. J. Opt. Soc. Am. B 8, 858867.Google Scholar
Bochkarev, S.G. & Bychenkov, V.Yu. (2007). Acceleration of electrons by tightly focused femtosecond laser pulses. Quantum Electron. 3, 273284.Google Scholar
Borovskiy, A.V., Galkin, A.L. & Kalashnikov, M.P. (2015). Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse. Phys. Plasmas 22, 043107043107.Google Scholar
Bulanov, S.V., Esirkepov, T.Zh., Kando, M., Pirozhkov, A.S. & Rosanov, N.N. (2013). Relativistic mirrors in plasmas. Novel results and perspectives. Phys. Usp. 56(5), 429464.Google Scholar
Cao, N., Ho, Y.K., Wang, P.X., Pang, J., Kong, Q., Shao, L. & Wang, Q.S. (2002). Output features of vacuum laser acceleration. J. Appl. Phys. 92, 55815583.Google Scholar
Cao, N., Ho, Y.K., Xie, Y.J., Pang, J., Chen, Z., Shao, L., Kong, Q. & Wang, Q.S. (2004). Interaction of an electron bunch with a laser pulse in vacuum. Appl. Phys. B 78, 781790.CrossRefGoogle Scholar
Esarey, E., Schroeder, C.B. & Leemans, W.P. (2009). Physics of laser-driven plasma-based electron accelerators. Rev. Mod. Phys. 8(1), 12291285.Google Scholar
Galkin, A.L., Korobkin, V.V., Romanovsky, M.Yu. & Shiryaev, O.B. (2010). Electrodynamics of electron in a superintense laser field: New principles of diagnostics of relativistic laser intensity. Phys. Plasmas 17, 053105053105.Google Scholar
Galkin, A.L., Korobkin, V.V., Romanovsky, M.Yu. & Shiryaev, O.B. (2008). Dynamics of an electron driven by relativistically intense laser radiation. Phys. Plasmas 15, 023104.Google Scholar
Galkin, A.L., Korobkin, V.V., Romanovskiy, M.Yu., Trofimov, V.A. & Shiryaev, O.B. (2012). Acceleration of electrons to high energies in the field of a standing wave generated by counterpropagating intense laser pulses with tilted amplitude fronts. Phys. Plasmas 19, 073102073102.CrossRefGoogle Scholar
Hartemann, F.V., Van Meter, J.R., Troha, A.L., Landahl, E.C., Luhmann, N.C. Jr., Baldis, H.A., Gupta, A. & Kerman, A.K. (1998). Three-dimensional relativistic electron scattering in an ultrahigh-intensity laser focus. Phys. Rev. E 58, 50015012.Google Scholar
Hua, J.F., Ho, Y.K., Lin, Y.Z., Chen, Z., Xie, Y.J., Zhang, S.Y., Yan, Z. & Xu, J.J. (2004). High-order corrected fields of ultrashort, tightly focused laser pulses. Appl. Phys. Lett. 85, 37053707.Google Scholar
Hu, S.X. & Starace, A.F. (2002). GeV electrons from ultraintense laser interaction with highly charged ions. Phys. Rev. Lett. 88, 245003245003.Google Scholar
Hu, S.X. & Starace, A.F. (2006). Laser acceleration of electrons to giga-electron-volt energies using highly charged ions. Phys. Rev. E 73, 066502.Google Scholar
Kalashnikov, M., Andreev, A., Ivanov, K., Galkin, A., Korobkin, V., Romanovsky, M., Shiryaev, O., Schnuerer, M., Braenzel, J. & Trofimov, V. (2015). Diagnostics of peak laser intensity based on the measurement of energy of electrons emitted from laser focal region. Laser Part. Beams 33, 361366.Google Scholar
Kong, Q., Ho, Y.K., Wang, J.X., Wang, P.X., Feng, L. & Yuan, Z.S. (2000). Conditions for electron capture by an ultraintense stationary laser beam. Phys. Rev. E 61, 19811984.Google Scholar
Korobkin, V.V., Romanovskiy, M.Yu., Trofimov, V.A. & Shiryaev, O.B. (2013). Concept of generation of extremely compressed high-energy electron bunches in several interfering intense laser pulses with tilted amplitude fronts. Laser Part. Beams 31, 2328.Google Scholar
Li, J.-X., Zang, W.-P. & Tian, J.-G. (2010). Vacuum laser-driven acceleration by Airy beams. Opt. Express 18(7), 73007306.Google Scholar
Malka, V. (2012). Laser plasma accelerators. Phys. Plasmas 19, 055501055501.Google Scholar
Mori, W.B. (2007). The development of laser- and beam-driven plasma accelerators as an experimental field. Phys. Plasmas 14, 055501055501.Google Scholar
Mourou, G.A., Tajima, T. & Bulanov, S.V. (2006). Optics in the relativistic regime. Rev. Mod. Phys. 78, 309371.Google Scholar
Norreys, P.A., Beg, F.N., Sentoku, Y., Silva, L.O., Smith, R.A. & Trines, R.M.G.M. (2009). Intense laser-plasma interactions: New frontiers in high energy density physics. Phys. Plasmas 16, 041002041002.CrossRefGoogle Scholar
Ohkubo, T., Bulanov, S.V., Zhidkov, A.G., Esirkepov, T., Koga, J., Uesaka, M. & Tajima, T. (2006). Wave-breaking injection of electrons to a laser wake field in plasma channels at the strong focusing regime. Phys. Plasmas 13, 103101103101.Google Scholar
Pang, J., Ho, Y.K., Yuan, X.Q., Cao, N., Kong, Q., Wang, P.X., Shao, L., Esarey, E.H. & Sessler, A.M. (2002). Subluminous phase velocity of a focused laser beam and vacuum laser acceleration. Phys. Rev. E 66, 066501066501.Google Scholar
Payeur, S., Fourmaux, S., Schmidt, B.E., MacLean, J.P., Tchervenkov, C., Légaré, F., Piché, M. & Kieffer, J.C. (2012). Generation of a beam of fast electrons by tightly focusing a radially polarized ultrashort laser pulse. Appl. Phys. Lett. 101, 041105041105.Google Scholar
Quesnel, B. & Mora, P. (1998). Theory and simulation of the interaction of ultraintense laser pulses with electrons in vacuum. Phys. Rev. E 58, 37193732.Google Scholar
Salamin, Y.I., Mocken, G.R. & Keitel, C.H. (2002). Electron scattering and acceleration by a tightly focused laser beam. Phys. Rev. E ST - Accel. Beams 5, 101301101301.Google Scholar
Wang, J.X., Ho, Y.K., Kong, Q., Zhu, L.J., Feng, L., Scheid, S. & Hora, H. (1998). Electron capture and violent acceleration by an extra-intense laser beam. Phys. Rev. E 58, 65756577.Google Scholar
Wang, P.X., Ho, Y.K., Yuan, X.Q., Kong, Q., Cao, N., Sessler, A.M., Esarey, E. & Nishida, Y. (2001). Vacuum electron acceleration by an intense laser. Appl. Phys. Lett. 78, 22532255.Google Scholar
Wang, J.X., Ho, Y.K., Kong, Q., Zhu, L.J., Feng, L., Scheid, S. & Hora, H. (2002). Characteristics of laser-driven electron acceleration in vacuum. J. Appl. Phys. 91, 856866.CrossRefGoogle Scholar
Wang, P.X., Ho, Y.K., Tang, Ch.X. & Wang, W. (2007). Field structure and electron acceleration in a laser beam of a high-order Hermite-Gaussian mode. J. Appl. Phys. 101, 083113083113.Google Scholar
Zheng, L., Wang, P.X., Chen, Z., Kong, Q., Ho, Y.K. & Kawata, S. (2008). Optimum injection momentum for electrons in vacuum laser acceleration. Europhys. Lett. 82, 6400164001.Google Scholar