Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T02:36:51.644Z Has data issue: false hasContentIssue false

Ponderomotive self-focusing of linearly polarized laser beam in magnetized quantum plasma

Published online by Cambridge University Press:  08 December 2016

N. S. Rathore
Affiliation:
Department of Physics, University of Lucknow, Lucknow 226007, India
P. Kumar*
Affiliation:
Department of Physics, University of Lucknow, Lucknow 226007, India
*
Address correspondence and reprint requests to: P. Kumar, Department of Physics, University of Lucknow, Lucknow 226007, India. E-mail: punitkumar@hotmail.com

Abstract

Ponderomotive non-linearities arising by propagation of a linearly polarized laser beam through high-density quantum plasma are studied. The intense laser beam sets the plasma electrons in quiver motion and consequently ponderomotive non-linearity sets in leading to electron density perturbation inside the plasma. The interaction formalism has been built using the quantum hydrodynamic model. Laser beam traversing through high-density quantum plasma acquires an additional focusing tendency due to the perturbation induced by ponderomotive force in the plasma density. The ponderomotive force causes the beam to focus and the quantum effects contribute in focusing. The transverse magnetization of quantum plasma enhances the self-focusing and increase in magnetic field limits the spot size.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amendt, P., Eder, D.C. & Wilks, S.C. (1991). X-ray lasing by optical-field-induced ionization. Phys. Rev. Lett. 66, 2589.Google Scholar
Andreev, N.E., Krisanov, V.I. & Gorbunov, L.M. (1995). Stimulated processes and self-modulation of a short intense laser pulse in the laser wake-field accelerator. Phys. Plasmas 2, 2573.Google Scholar
Antonsen, T.M. & Mora, P. (1992). Self-focusing and Raman scattering of laser pulses in tenuous plasmas. Phys. Rev. Lett. 69, 2204.Google Scholar
Ashour-Abdalla, M., Leboeuf, J.N., Tajima, T., Dawson, J.M. & Kennel, C.F. (1981). Ponderomotive acceleration ahead of the intense EM pulse. Phys. Rev. A 23, 1906.Google Scholar
Barnes, W., Dereux, A. & Ebbesen, T. (2003). Review article surface plasmon subwavelength optics. Nature 424, 824.Google Scholar
Bastin, T.S. (2005). Notes on Electromagnetic Waves in a Plasma. Charlottesville, Virginia: National Radio Astronomy Observatory.Google Scholar
Bittencourt, J.A. (2008). Fundamental of Plasma Physics, 3rd edn. USA: Springer.Google Scholar
Borghesi, M., Mackinnon, A.J., Gaillard, R., Willi, O., Pukhov, A. & Meyer-ter-Vehn, J. (1998). Large quasistatic magnetic fields generated by a relativistically intense laser pulse propagating in a preionized plasma. Phys. Rev. Lett. 80, 5137.CrossRefGoogle Scholar
Burnett, N.H. & Corkum, P.B. (1989). Cold-plasma production for recombination extreme-ultraviolet lasers by optical-field-induced ionization. J. Opt. Soc. Am. B 6, 1195.Google Scholar
Chen, F.F. (2008). Introduction to Plasma Physics and Controlled Fusion, 2nd edn. USA: Springer.Google Scholar
Deutsch, B., Furukawa, H., Mima, K., Murakami, M. & Nishihara, K. (1996). Interaction physics of the fast ignitor concept. Phys. Rev. Lett. 77, 2483.Google Scholar
Drake, J.F., Kaw, P.K., Lee, Y.C., Schmidt, G., Liu, C.S. & Rosenbluth, M.N. (1974). Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids 4, 778.Google Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1997). Self-focusing and guiding of short laser pulses in ionizing gases and plasmas. IEEE J. Quantum Electron. 33, 1879.Google Scholar
Fuchs, J., Malka, G., Adam, J.C., Amiranoff, F., Baton, S.D., Blanchot, N., Heron, A., Laval, G., Miquel, J.L., Mora, P., Pépin, H. & Rousseaux, C. (1998). Dynamics of subpicosecond relativistic laser pulse self-channeling in an underdense preformed plasma. Phys. Rev. Lett. 80, 1658.Google Scholar
Gardner, C.L. & Ringhofer, C. (1996). Smooth quantum potential for the hydrodynamic. Model Phys. Rev. E 53, 157.Google Scholar
Goldston, R.J. & Rutherford, P.H. (1995). Introduction to Plasma Physics. UK: IOP Publishing Ltd.Google Scholar
Gorbunov, L.M., Mora, P. & Solodov, A.A. (2003). Dynamics of a plasma channel created by the wakefield of a short laser pulse. Phys. Plasmas 10, 1124.Google Scholar
Hegelich, M., Karsch, S., Pretzler, G., Habs, D., Witte, K., Guenther, W., Allen, M., Blazevic, A., Fuchs, J., Gauthier, J.C., Geissel, M., Audebert, P., Cowan, T. & Roth, M. (2002). MeV ion jets from short-pulse–laser interaction with thin foils. Phys. Rev. Lett. 89, 085002.Google Scholar
Horton, W. & Tajima, T. (1985). Laser beat-wave accelerator and plasma noise. Phys. Rev. A 31, 3937.Google Scholar
Jha, P., Wadhwani, N., Raj, G. & Upadhyaya, A.K. (2004 a). Relativistic and ponderomotive effects on laser plasma interaction dynamics. Phys. Plasmas 11, 1834.Google Scholar
Jha, P., Wadhwani, N., Upadhyaya, A.K. & Raj, G. (2004 b). Self-focusing and channel-coupling effects on short laser pulses propagating in a plasma channel. Phys. Plasmas 11, 3259.Google Scholar
Joshi, C., Mori, W.B., Katsouleas, T., Dawson, J.M., Kindel, J.M. & Forslund, D.W. (1984). Ultrahigh gradient particle acceleration by intense laser-driven plasma density waves. Nature 33, 525.Google Scholar
Joshi, C., Tajima, T., Dawson, J.M., Baldis, H.A. & Ebrahim, N.A. (1981). Forward RamanInstability and Electron Acceleration. Phys. Rev. Lett. 47, 1285.Google Scholar
Katsouleas, T. & Dawson, J.M. (1983). Unlimited electron acceleration in laser-driven plasma waves. Phys. Rev. Lett. 51, 392.Google Scholar
Kaur, S. & Sharma, A.K. (2009). Self focusing of a laser pulse in plasma with periodic density ripple. Laser Part. Beams 27, 193199.Google Scholar
Lawson, J.D. (1983). Beat-wave laser accelerators: first report of the RAL study group. Report RL-83-057. UK: Rutherford Appleton Lab.Google Scholar
Lin, H., Ming Chen, L. & Kieffer, J.C. (2002). Harmonic generation of ultraintense laser pulses in underdense plasma. Phys. Rev. E 65, 036414.Google Scholar
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.Google Scholar
Misra, A.P., Brodin, G., Marklund, M. & Shukla, P.K. (2010). Localized whistlers in magnetized spin quantum plasmas. Phys. Rev. E 82, 056406.Google Scholar
Najmudin, Z., Tatarakis, M., Pukhov, A., Clark, E.L., Clarke, R.J., Dangor, A.E., Faure, J., Malka, V., Neely, D., Santala, M.I.K. & Krushelnick, K. (2001). Measurements of the inverse Faraday effect from relativistic laser interactions with an underdense plasma. Phys. Rev. Lett. 87, 215004.Google Scholar
Regan, S.P., Bradley, D.K., Chirokikh, A.V., Craxton, R.S., Meyerhofer, D.D., Seka, W., Short, R.W., Simon, A., Town, R.P.J. & Yaakobi, B. (1999). Laser-plasma interactions in long-scale-length plasmas under direct-drive National Ignition Facility conditions. Phys. Plasmas 6, 2072.Google Scholar
Sharma, A. & Kourakis, I. (2010). Relativistic laser pulse compression in plasmas with a linear axial density gradient. Plasma Phys. Control. Fusion 52, 065002.Google Scholar
Shpatakovskaya, G.J. (2006). Semiclassical model of a one-dimensional quantum dot Exp. Theor. Phys. 102, 466.Google Scholar
Shukla, P.K. & Eliasson, B. (2006). Formation and dynamics of dark solitons and vortices in quantum electron plasmas. Phys. Rev. Lett. 96, 245001.Google Scholar
Shukla, P.K. & Eliasson, B. (2007). Nonlinear interactions between electromagnetic waves and electron plasma oscillations in quantum plasmas. Phys. Rev. Lett. 99, 096401.Google Scholar
Shukla, P.K. & Eliasson, B. (2010). Nonlinear aspects of quantum plasma. Phys. – Usp. 53, 5.Google Scholar
Sprangle, P., Esarey, E. & Ting, A. (1990). Nonlinear theory of intense laser-plasma interactions. Phys. Rev. Lett. 64, 2011.Google Scholar
Sprangle, P., Tang, C.M. & Esarey, E. (1987). Relativistic self-focusing of short-pulse radiation beams in plasmas. IEEE Trans. Plasma Sci. PS-15, 145.Google Scholar
Stenflo, L., Shukla, P.K. & Marklund, M. (2006). New low-frequency oscillations in quantum dusty plasmas. Europhys. Lett. 74, 844.Google Scholar
Sullivan, D.J. & Godfrey, B.B. (1981). Em wave electron acceleration. IEEE Trans. Nucl. Sci. NS-28, 3395.Google Scholar
Sun, G.Z., Ott, E., Lee, Y.C. & Guzdar, P. (1987). Self-focusing of short intense pulses in plasmas. Phys. Fluids 30, 526.Google Scholar
Tajima, T. & Dawson, J.M. (1979 a). Laser electron accelerator. Phys. Rev. Lett. 43, 267.CrossRefGoogle Scholar
Tajima, T. & Dawson, J.M. (1979 b). An electron accelerator using a laser. IEEE Trans. Nucl. Sci. NS-26, 4188.Google Scholar
Tang, C.M., Sprangle, P. & Sudan, R.N. (1984). Excitation of the plasma waves in the laser beat wave accelerator. Appl. Phys. Lett. 45, 375.Google Scholar
Tang, C.M., Sprangle, P. & Sudan, R.N. (1985). Dynamics of space-charge waves in the laser beat wave accelerator. Phys. Fluids 28, 1974.Google Scholar
Tyshetskiy, Yu, Vladimirov, S.V. & Kompaneets, R. (2011). On kinetic description of electromagnetic processes in a quantum plasma. Phys. Plasmas 18, 112104.Google Scholar
Upadhyay, A., Tripathi, V.K., Sharma, A.K. & Pant, H.C. (2002). Asymmetric self-focusing of a laser pulse in plasma. J. Plasma Phys. 68, 7580.Google Scholar
Varshney, M., Qureshi, K.A. & Varshney, D. (2006). Relativistic self-focusing of a laser beam in an inhomogeneous plasma. J. Plasma Phys. 72, 195203.Google Scholar
Wei, L. & Wang, Y. (2007). Quantum ion-acoustic waves in single-walled carbon nanotubes studied with a quantum hydrodynamic model. Phys. Rev. B. 75, 193407.Google Scholar
Wilks, S.C., Kruer, W.L., Tabak, M. & Langdon, A.B. (1992). Absorption of ultra-intense laser pulses. Phys. Rev. Lett. 69, 1383.Google Scholar